




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抛物线y=x2-2x+1的对称轴是 ()(A)直线x=1(B)直线x=-1 (C)直线x=2(D)直线x=-22、对于的图象下列叙述正确的是()A、顶点坐标为(3,2)B、对称轴为y=3C、当时随增大而增大D、当时随增大而减小3、函数y=ax2(a0)的图象经过点(a,8),则a的值为()A.2B.2C.2D.34、自由落体公式h=gt2(g为常量),h与t之间的关系是()A.正比例函数B.一次函数 C.二次函数D.以上答案都不对5、对于任意实数m,下列函数一定是二次函数的是()ABCD6、二次函数y=x2图象向右平移3个单位,得到新图象的函数表达式是().y=x2+3.y=x2-3 .y=(x+3)2.y=(x-3)27、某工厂第一年的利润是20万元,第三年的利润是y万元,与平均年增长率x之间的函数关系式是。8、某学校去年对实验器材投资为2万元,预计今明两年的投资总额为y万元,年平均增长率为 x。则y与x的函数解析式。9、m取 时,函数是以x为自变量的二次函数.10、已知二次函数y=x2+x+2 指出(1)函数图像的对称轴和顶点坐标;(2)把这个函数的图像向左、向下平移2个单位,得到哪一个函数的图像?1、抛物线y=x2-2x+1的对称轴是 ()(A)直线x=1(B)直线x=-1 (C)直线x=2(D)直线x=-22、对于的图象下列叙述正确的是()A、顶点坐标为(3,2)B、对称轴为y=3C、当时随增大而增大D、当时随增大而减小3、函数y=ax2(a0)的图象经过点(a,8),则a的值为()A.2B.2C.2D.34、自由落体公式h=gt2(g为常量),h与t之间的关系是()A.正比例函数B.一次函数 C.二次函数D.以上答案都不对5、对于任意实数m,下列函数一定是二次函数的是()ABCD6、二次函数y=x2图象向右平移3个单位,得到新图象的函数表达式是().y=x2+3.y=x2-3 .y=(x+3)2.y=(x-3)27、某工厂第一年的利润是20万元,第三年的利润是y万元,与平均年增长率x之间的函数关系式是。8、某学校去年对实验器材投资为2万元,预计今明两年的投资总额为y万元,年平均增长率为 x。则y与x的函数解析式。9、m取 时,函数是以x为自变量的二次函数.10、已知二次函数y=x2+x+2 指出(1)函数图像的对称轴和顶点坐标;(2)把这个函数的图像向左、向下平移2个单位,得到哪一个函数的图像?16、杭州体博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(单位:万元),且y=ax2+bx,若维修保养费用第1个月为2万元,第2个月为4万元;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(单位:万元),g也是关于x的二次函数.(1)y关于x的解析式;(2)纯收益g关于x的解析式;(3)设施开放个月后,游乐场纯收益达到最大?个月后,能收回投资?17、已知:二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:=-1;ac+b+1=0;abc0;a-b+c0.正确的序号是.18、(2006武汉)已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0x10;bc;3a+c0,其中正确结论两个数有。19、已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为,这个二次函数的解析式。20、(2006武汉)已知二次函数的图象开口向下,且经过原点.请写出一个符合条件的二次函数的解析式_.24、(10分)某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系:(1)写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); (2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? (共40分)21、(6分)请画出函数yx2x的图象,并说明这个函数具有哪些性质.23、(6分)已知y是x的二次函数,当x=2时,y=4,当y=4时,x恰为方程2x2x8=0的根,求这个函数的解析式。25、(2008年金华市)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2bx0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围 .AOBDEFxy参考答案一、1、A;提示:因为抛物线y=ax2+bx+c的对称轴方程是:y=-,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确 另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A 2、B;3、A、顶点坐标为(3,2)4、A5、C.将(a,8)代入得a38,解得a=26、C;是二次函数7、B.二次函数自变量的取值范围是所有实数8、C;竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)9、C对于任意实数m都是二次函数10、D;本题考查的是抛物线的平移.先画出y=x2的草图,图象向右平移3个单位对称轴为x3,选项中的二次函数的对称轴为x3.二、11、函数关系式是,即12、由图像的对称轴和函数的最大值,可知顶点坐标是(3,0),设y=a(x3)2,把x=0,y=1代入,得9a=1 ,a=,y=(x3)213、设今年投资额为2(1+x)元,明年投资为2(1+x)2元由题意可得.y=2(1+x)+2(1+x)2=2x2+6x+414、若函数是二次函数,则解得 ,且因此,当,且时,函数是二次函数15、解:(1),;(2),.16、(1)y=x2+x;(2)纯收益g=33x-150-(x2+x)=-x2+32x-150(3)g=-x2+32x-150=-(x-16)2+106,即设施开放16个月后游乐场的纯收益达到最大.又在0x16时,g随x的增大而增大,当x5时,g0,所以6个月后能收回投资.17、正确的序号为.从图象中易知a0,b0,c0,正确;设C(0,c),则OC=|c|, OA=OC=|c|, A(c,0)代入抛物线得ac2+bc+c=0,又c0,ac+b+1=0,故正确.18、这是一道没给图象的题,由已知条件可以大致画出如下图所示的图象, 0x10正确;=-1, b=2a, b-a=2a-a=a0. bac,故不正确;把b=2a代入a+b+c0得3a+c0, 正确;故答案为2个.19、解:点(1,0),(-5,0)是抛物线与x的两交点, 抛物线对称轴为直线x=-2, 抛物线的顶点坐标为(2,),设抛物线的解析式为yax2bxc,则有 所求二次函数解析式为20、如果设二次函数的解析式为y=ax2+bx+c,因为图象开口向下,所以a为负数,图象过原点,即c0,满足这两个条件的解析式有无数个.解:yx23x.三、21、分析:由以上探索求知,大家已经知道函数yx2x的图象的开口方向、对称轴和顶点坐标.根据这些特点,可以采用描点法作图的方法作出函数yx2x的图象,进而观察得到这个函数的性质.解:(1)列表:在x的取值范围内列出函数对应值表;x2101234y6422246(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑的曲线顺次连接各点,得到函数yx2x的图象.说明:(1)列表时,应根据对称轴是x1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的.(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观.则可得到这个函数的性质如下:当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x1时,函数取得最大值,最大值y2.22、解:(1)配方,y=(x24x+44)+2=(x2)2+3图像的对称轴是直线x=2,顶点坐标为(2,3)。(2)把这个函数的图像向左、向下平移2个单位,顶点成为(0,1),形状不变,得到函数y=x+1的图像。23、解:本题不便求出方程2x2x8=0的根,设这个方程的根为x1、x2,则当x=x1,x=x2时,y=4,可设y=a(2x2x8)+4把x=2,y=4代入,得4=a(22228 )+4得a=4,所求函数为y=4(2x2x8)+4=8x24x2824、分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与之间的函数关系,这个函数是二次函数.要求销售的最大利润,就是要求这个二次函数的最大值.解:(1)由题意,销售利润与每件的销售价之间的函数关系为=(42)(3204),即=32+8568(2)配方,得=3(55)2+507当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.25、解:(1)由题意得点E(1,1.4), B(6,0.9), 代入y=ax2+bx+0.9得 解得 所求的抛物线的解析式是y=0.1x20.6x+0.9. (2)把x=3代入y=0.1x20.6x+0.9得y=0.1320.63+0.9=1.8 小华的身高是1.8米 (3)1t5 二次函数一、 选择题:1. 抛物线的对称轴是( )A. 直线B. 直线C. 直线D. 直线2. 二次函数的图象如右图,则点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知二次函数,且,则一定有( )A. B. C. D. 04. 把抛物线向右平移3个单位,再向下平移2个单位,所得图象的解析式是,则有( )A. ,B. ,C. ,D. ,5. 已知反比例函数的图象如右图所示,则二次函数的图象大致为( ) 6. 下面所示各图是在同一直角坐标系内,二次函数与一次函数的大致图象,有且只有一个是正确的,正确的是( ) 7. 抛物线的对称轴是直线( )A. B. C. D. 8. 二次函数的最小值是( )A. B. 2C. D. 19. 二次函数的图象如图所示,若,则( )A. ,B. ,C. ,D. ,二、填空题:10. 将二次函数配方成的形式,则y=_.11. 已知抛物线与x轴有两个交点,那么一元二次方程的根的情况是_.12. 已知抛物线与x轴交点的横坐标为,则=_.13. 请你写出函数与具有的一个共同性质:_.14. 有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15. 已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_.16. 如图,抛物线的对称轴是,与x轴交于A、B两点,若B点坐标是,则A点的坐标是_. 三、解答题:1. 已知函数的图象经过点(3,2).(1)求这个函数的解析式;(2)当时,求使y2的x的取值范围.2. 如右图,抛物线经过点,与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是以AB为腰的等腰三角形,试求点P的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?提高题1. 如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2. 某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入支出费用)为y(元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由;(4)请把(2)中所求的二次函数配方成的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?参考答案一、选择题:题号123456789答案DDAADDDBD二、填空题:1. 2. 有两个不相等的实数根3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 或或或6. 等(只须,)7. 8. ,1,4三、解答题:1. 解:(1)函数的图象经过点(3,2),. 解得. 函数解析式为.(2)当时,. 根据图象知当x3时,y2. 当时,使y2的x的取值范围是x3.2. 解:(1)由题意得. . 抛物线的解析式为.(2)点A的坐标为(1,0),点B的坐标为. OA=1,OB=4. 在RtOAB中,且点P在y轴正半轴上. 当PB=PA时,. . 此时点P的坐标为.当PA=AB时,OP=OB=4 此时点P的坐标为(0,4).3. 解:(1)设s与t的函数关系式为, 由题意得或 解得 .(2)把s=30代入,得 解得,(舍去) 答:截止到10月末公司累积利润可达到30万元.(3)把代入,得 把代入,得 . 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y轴上,所以设这部分抛物线为图象的函数的解析式为. 因为点或在抛物线上,所以,得. 因此所求函数解析式为(x).(2)因为点D、E的纵坐标为,所以,得. 所以点D的坐标为,点E的坐标为. 所以. 因此卢浦大桥拱内实际桥长为(米).5. 解:(1)AB=3,. 由根与系数的关系有.,.OA=1,OB=2,.,.OC=2. ,.此二次函数的解析式为.(2)在第一象限,抛物线上存在一点P,使SPAC=6.解法一:过点P作直线MNAC,交x轴于点M,交y轴于N,连结PA、PC、MC、NA. MNAC,SMAC=SNAC= SPAC=6.由(1)有OA=1,OC=2. AM=6,CN=12.M(5,0),N(0,10).直线MN的解析式为.由 得(舍去)在 第一象限,抛物线上存在点,使SPAC=6.解法二:设AP与y轴交于点(m0)直线AP的解析式为.,.又SPAC= SADC+ SPDC=.,(舍去)或.在 第一象限,抛物线上存在点,使SPAC=6.提高题1. 解:(1)抛物线与x轴只有一个交点,方程有两个相等的实数根,即. 又点A的坐标为(2,0),. 由得,.(2)由(1)得抛物线的解析式为.当时,. 点B的坐标为(0,4).在RtOAB中,OA=2,OB=4,得.OAB的周长为.2. 解:(1). 当时,. 当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是万元. 经分析,有两种投资方式符合要求,一种是取A、B、E各一股,投入资金为(万元),收益为0.55+0.4+0.9=1.85(万元)1.6(万元); 另一种是取B、D、E各一股,投入资金为2+4+6=12(万元)1.6(万元).3. 解:(1)设抛物线的解析式为,桥拱最高点到水面CD的距离为h米,则,. 解得 抛物线的解析式为. (2)水位由CD处涨到点O的时间为10.25=4(小时), 货车按原来速度行驶的路程为401+404=2000,c0B. ab0,c0C. ab0D. ab0,c4,那么AB的长是( )A. 4+m B. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1x1x2,x3-1,则y1,y2,y3的大小关系是( )A. y1y2y3B. y2y3y1 C. y3y1y2 D. y2y14,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1x1-1时,由图象知,y随x的增大而减小,所以y2y1;又因为x3-1,此时点P3(x3,y3)在二次函数图象上方,所以y2y1y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚氨酯锤纹漆项目可行性研究报告
- 防洪知识培训大纲课件
- 防汛知识培训考核目的
- 防汛救援知识培训材料课件
- 智慧城管信息化综合解决方案
- 环境科技行业环保装备行业市场格局分析
- 机械制造行业智能制造技术应用思考
- 万寿菊种植合同5篇
- 联通合约机,合同3篇
- (宝典指南)水泥砂石资料购销合同3篇
- 民谣酒馆创业计划书
- 电工安全常识课件
- 温度计的前世今生
- 2021年出版专业职业资格考试中级出版专业理论与实务真题及答案
- 新产品可行性评估表
- 小学综合实践活动成长手册三年级上册第2课《传统游戏》教案
- 公众责任险典型公估报告
- 2023年大学生信息素养大赛考试参考题库500题(含答案)
- 【集成峰会】《2023-2024中国集成厨电产业发展蓝皮书》
- 绿色建筑和绿色建筑材料
- 小区业主公约
评论
0/150
提交评论