已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
异方差性1定义:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同。则认为出现了异方差性。2影响:OLS参数估计量非有效:具有:线性性、无偏性不具有:有效性(大样本下)具有:一致性不具有:渐进有效性变量的显著性检验失去意义关于变量的显著性检验中,构造了t统计量,他是建立在随机干扰项共同的方差2不变,而真确地估计了参数方差S的基础之上的。如果出现了异方差性其估计值会偏大或偏小。tBj检验失去意义。模型的预测失效预测值的置信区间中也包含有参数的方差的估计量S。所以当模型出现异方差性是,任然Bj使用ols估计量,将导致预测区间篇大或小,预测功能失效。3判断:假设4:Var(mi|xi)=s2由于异方差性是相对于不同的解释变量观测值,随机误差项具有不同的方差。那么检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。随机误差项方差的表示!一般的处理方法:首先采用OLS估计,得到残差估计值。用它的平方近似随机误差项的方差。残差估计值ei=Y-Y(OLS)近似随机误差项的方差Var(mi)=E(mi)ei2图示检验法帕克检验与戈里瑟检验由于f(x)的形式未知,所以要进行各种形式的检验。eeii2=f(Xji)+ei|=f(Xji)+ei选择关于变量X的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。GQ检验:适合样本容量大,异方差为单调增或单调减的函数形式。Step1将样本观测值按照有可能引起异方差的解释变量观测值排序Step2除去c=0.25n观测值,讲剩下的观测值分为两组,每个子样样本容量为0.5(n-c)Step3对每个子样做OLS,计算出两个残差平方和,自由度为0.5(n-c)-k-1Step4构建F分布FFa(v1,v2)拒绝同方差性假设,表明存在异方差。White检验:对任何形式的异方差均试用。Step1做OLS回归,得到eiVar(mi)=E(mi2)2Step2辅助回归ei22=a0+a1X1i+a2X2i+a3X1i+a4X2i+a5X1iX2i+ei由度为辅助回归中解释变量个数的c分布,即nRc2。nR2ca(辅助回归中解释变量个数)拒绝同方差性假设,表明存在异方差。22辅助回归是检验ei与解释变量可能组合的显著性。如果存在异方差性,则表明ei与某种解释变量的组合存在显著的相关性,往往显示出比较大的可决系数,并且某一参数的t检验值比较大。Step3在同方差性假设下,辅助回归的可决系数R2,与样本容量n的乘积,渐进地服从自2224解决:加权最小二乘法WLS(也称为广义最小二乘法GLS):关键是寻找随机干扰项与解释变量间适当的函数形式。加权最小二乘估计量,是无偏、有效的估计量。广义最小二乘法估计量具有BLUE特征。思路:加权最小二乘法就是对原模型进行加权处理,使新模型不存在异方差性,然后采用普通最小二乘法进行回归。对较大的残差平方和赋予较小的权,对较小的残差平方和赋予较大的权。Var(mi)=E(mi)2=si2=f(Xji)s21f(Xji)Yi=b01f(Xji)+b11f(Xji)X1i+b21f(Xji)X2i+)+bk1f(Xji)Xki+1f(Xji)miVar(1f(Xji)mi)=E(1f(Xji)mi)2=1f(Xji)E(mi)2=s2加权后的模型满足同方差性,可用OLS法估计。w权=1f(xij)普通最小二乘法就是权等于1时的加权最小二乘法。异方差稳健标准误法:适合样本容量足够大的情况。不具有有效性。仍用普通最小二乘法估计量,对方差进行修正。用wls时,寻找合适的函数形式比较困难,所以可以应用异方差稳标准误法来消除异方差带来的后果。思路:存在异方差性的时候,用普通最小二乘回归的估计量是具有无偏性,一致性,但不具有有效性。只影响了参数估计量的方差和标准差的正确估计。优点:找不到wls的权时候使用异方差稳健标准误法。修正方差后,使得以估计量方差为基础的统计检验不再失效,预测区间更加合理。一般经验:对于采用截面数据作为样本的计量及经济学问题,由于在不同样本点上解释变量以外的其他因素差异较大,所以往往存在异方差性。n采用截面数据作样本时,不对原模型进行异方差性检验,而是直接选择加权最小二乘法。n如果确实存在异方差,则被有效地消除了;n如果不存在异方差性,则加权最小二乘法等价于普通最小二乘法。n采用时序数据作样本时,不考虑异方差性检验。经济变量固有惯性和滞后期模型设定偏误:(遗漏了重要的解释变量/模型设定有误虚假序列相关)随机干扰项中一个重要的系统性影序列相关性:经常出现在以时间序列数据为样本的模型中响因素。数据的编造:新数据是通过源数据生成的。1定义:随机干扰项序列相关假设4Cov(mi,mj)=E(mi,mj)0一阶序列相关/自相关:形式1E(mi,mi+1)0形式2mi=rmi-1+ei一阶自相关系数/自协方差系数r2影响OLS参数估计量非有效:具有线性无偏性,不具有有效性。因为在证明中用了同方差性和独立性条件。(大样本)具有一致性,不具有渐进有效性。变量的显著性检验失去意义T统计量是建立在参数方差正确估计的基础之上的。只有当随机干扰项具有同方差和相互独立性时才成立。如果存在序列相关性,则估计的参数方差S出现偏误,t检验失去意义。Bj模型的预测失效区间预测和参数估计量的方差有关,在方差估计有偏误的情况下,预测就不准。3判断ei图示法:残差=Yi-(Yi)0ls可以作为mi的估计回归检验法:etet=r-1+etetetet=r1-1+r2-2+et进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。有点就是,可以确定序列相关的形式,适用于各种类型的序列相关。D.W检验法:Step1假定条件:解释变量非随机随机干扰项为一阶自回归形式:mt=rmt-1+et回归模型模型中不能还有滞后变量作为解释变量回归模型中含有截距项Step2:原假设:H0:p=0即mt不存在一阶自回归D.W.2(1-r)完全1阶正相关p=1dw=0完全1阶负相关p=-1dw=4完全不相关p=0dw=2正相关不能确定无自相关不能确定负相关0dLdU24-dU4-dL上限du下限dL只与样本容量n和解释变量k有关而与解释变量取值无关缺点:只能检验一阶自相关,存在一片无法判断的dw值区域,不能检验存在滞后的解释变量的模型。LM拉格朗日乘数检验法:克服了DW的缺陷,适用于高阶序列相关和存在滞后解释变量的模型。Yi=b0+b1X1i+b2X2i+)+bkXki+miStep1:如果怀疑随机干扰项存在p阶段序列相关mt=r1mt-1+r2mt-2)+rpmt-p+etStep2:拉格朗日乘数检验就可以用来检验如下受约束回归方程tttY=b0+b1X1t+)+bkXkt+r1m-1+)+rpm-p+etH0:r1=r2=rp约束条件:H0:=0Step3:如果约束条件为真,则LM统计量服从在大样本下自由度为p的渐进x2分布eett辅助回归:=b0+b1X1t+)+bkXkt+r1-1et+)+rp-p+etn为辅助回归中样本容量,可决系数也来自该辅助回归。(LM=nR2c2P)一阶序列相关就是(n-1)二阶序列相关就是(n-2)Step4如果2LM=nR2ca(P)则拒绝约束条件为真的原假设,表明可能存在直到p阶的序列相关性。在实际检验中,可以逐步向高阶检验,并参考辅助回归中原模型经普通最小二乘法估计的残差项前参数的显著性来判断序列相关阶数。4解决广义最小二乘法:GLS的原理与WLS相同,只是将权矩阵W换为方差-协方差矩阵。(只要知道随机干扰项的方差-协方差矩阵就可以用GLS得到参数的最佳线性无偏估计量)广义最小二乘估计量是无偏的,有效地。如何得到方差-协方差矩阵?有n个样本,要对n(n-1)/2+k+2参数进行估计非常困难。所以要经过特殊设定后,才可得到其估计值。例如设定随机干扰项为一阶序列相关形式。广义差分法:广义差分法是将原模型变换为满足OLS法的差分模型,再d对差分模型进行OLS估计。得到的原模型参数无偏且有效估计量。Yi=b0+b1X1i+b2X2i+)+bkXki+mimt=r1mt-1+r2mt-2+)+rlmt-l+ettttY-r1Y-1-)-rlY-l=b0(1-r1-)-rl)+b1(X1t-r1X1t-1-)-rlX1t-l)+)+bk(Xkt-r1Xkt-1-)-rlXkt-l)+et注意:大样本下面广义差分法和广义最小二乘法的估计结果接近,但在小样本中观测值的损失可能会对估计结果又影响,为了弥补损失,可以进行普来斯-温斯特变换。这样广义差分法和广义最小二乘法的结果相同。随机干扰项相关系数的估计:应用广义最小二乘法或广义差分法,必须已知随机干扰项的相关系数r1,r2,rL。实际上,人们并不知道它们的具体数值,所以必须首先对它们进行估计。科克伦-奥科特迭代法Yi=b0+b1X1i+b2X2i+)+bkXki+mi采用OLS法估计随机误差项的“近似估计值”,作为方程的样本观测值mt=r1mt-1+r2mt-2+)+rlmt-l+etr1,r2,),rptttY-r1Y-1-)-rlY-l=b0(1-r1-)-rl)+b1(X1t-r1X1t-1-)-rlX1t-l)+)+bk(Xkt-r1Xkt-1-)-rlXkt-l)+et66b0,b1,),bkYi=b0+b1X1i+b2X2i+)+bkXki+mi第二次估计r1,r2,),rpn类似地,可进行第三次、第四次迭代。n两次迭代过程也被称为科克伦-奥科特两步法。给一个精度,当次估计之差小于这个精度就终止迭代。杜宾(durbin)两步法该方法仍是先估计r1,r2,rl,再对差分模型进行估计。tttY-r1Y-1-)-rlY-l=b0(1-r1-)-rl)+b1(X1t-r1X1t-1-)-rlX1t-l)+)+bk(Xkt-r1Xkt-1-)-rlXkt-l)+etYt=r1Yt-1+)+rlYt-p+b0(1-r1-)-rp)+b1(Xt-r1Xt-1-)-rlXt-p)+)+bk(Xkt-r1Xkt-1-)-rlXkt-p)+etr1,r2,),rp*k*jb0,b1,),b*b0=b0(1-r1-)-rp)bj=b*6768如果能够找到一种方法,求得或各序列相关系数rj的估计量,使得GLS能够实现,则称为可行的广义最小二乘法(FGLS,FeasibleGeneralizedLeastSquares)。如果参数是被估计出来的。FGLS估计量,也称为可行的广义最小二乘估计量(feasiblegeneralleastsquaresestimators)可行的广义最小二乘估计量不再是无偏的,但却是一致的,而且在科克伦-奥科特迭代法下,估计量也具有渐近有效性。前面提出的方法,就是FGLS。序列相关稳健标准误法:(大样本一致估计)出现序列相关只是影响到了参数方差的正确估计,从而无法保证最小二乘估计量的有效性,并不影响估计量的无偏性和一致性。仍采用OLS,但修正其方差。异方差+序列相关同时存在时,这个方法可以把方差都纠正了。多重共线性经济变量相关的共同趋势(时间序列和截面数据)滞后变量的引入样本资料的限制1定义:如果某两个或者多个解释变量间出现了相关性,则称为存在多重共线性。c1X1i+c2X2i+)+ckXki=0Ci不全为0完全共线性c1X1i+c2X2i+)+ckXki+vi=0Ci不全为0近似共线性R(X)k+1完全共线性当完全不共线时,r2=0var(b1)=s/x1ivar(b1)=s21s2x12ix12i2影响:1.完全共线性下参数估计量不存在。如果存在完全共线性,则(XX)-1不存在,无法得到参数的估计量。2.近似共线性下OLS估计量非有效22当近似共线时,01-r21多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(VarianceInflationFactor,VIF)表4.3.1方差膨胀因子表相关系数平方00.50.80.90.950.960.970.980.990.999方差膨胀因子12510202533501001000当完全共线时,r2=1,var(b1)=913.参数估计量经济含义不合理:不反应解释变量各自对于被解释变量的影响,而反应了共同影响。所以当出现解释变量系数不合理的情况应该首先怀疑存在多重共线性。4.变量的显著性检验失去意义存在多重共线性时参数估计值的方差与标准差变大容易使通过样本计算的t值小于临界值,误导作出参数为0的推断可能将重要的解释变量排除在模型之外5.模型的预测功能失效注意:除非是完全共线性,多重共线性并不意味着任何基本假设的违背;因此,即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。问题在于,即使OLS法仍是最好的估计方法,它却不是“完美的”,尤其是在统计推断上无法给出真正有用的信息。3判断:任务1、检验模型是否存在多重共线性2、判断存在多重共线性的范围。Step1:检验是否存在多重共线性Step2:判断多重共线性存在的范围如果可决系数接近1,则F统计量就会比较大。原假设:xj与其他解释变量不存在明显的线性关系。4解决:随机解释变量:多出现在滞后变量作为模型的解释变量的情况。1定义:单方程线性计量经济学模型假设解释变量是确定性变量,并且与随机干扰项不相关。违背这一假设的问题被称为随机解释变量问题。Style1:随机解释变量和随机干扰项独立Coc(x2,m)=0Style2:随机解释变量和随机干扰项同期无关但异期相关Coc(x2t,mt)=0Coc(x2t-s,mt-s)0Style3:随机解释变量和随机干扰项同期相关Coc(x2t,mt)0如果某解释变量是确定性变量,不是随机变量,则该解释变量一定与随机干扰项独立。假设5Cov(Xij,mi|X1,X2,X3Xk)=0该假设要求随机解释变量与随机干扰项同期无关,这时随机解释变量被称为同期外生的。如果随机解释变量和随机干扰项既不同期相关,也不异期相关则称为严格外生。2影响:随机解释变量和随机干扰项正相关随机解释变量和随机干扰项负相关AX与m相互独立,得到的参数估计量仍是无偏一致估计量BX与m同期无关,异期相关。一致,有偏。CX与m同期相关。有偏不一致。随机解释变量和随机干扰项同期相关是,会对OLS造成严重不良后果。这时候我们也称随机解释变量具有内生性。如果模型中有滞后的被解释变量作为解释变量,则同期相关时不一致有偏非有效。即使同期无关,肯定也会出现异期相关,ols还是有偏的。3判断:工具变量法(解决OLS有偏问题)BX与m同期无关,异期相关。一致,有偏。增大样本容量的方法来得到一致估计量。CX与m同期相关。有偏不一致。增大样本容量也无法解决。使用工具变量法。4解决Yi=b0+b1Xi三点说明:1、工具变量法并没有改变原来的模型。只是在模型参数的估计过程中用工具变量替代了随机解释变量。工具变量法可以分解为以下两阶段的OLSStep1:用普通最小二乘法进行X关于工具变量Z的回归)Xi=a0+a1Zi)Step2:以第一步得到的Xi为解释变量,进行如下普通最小二乘回归:)工具变量法仍是Y对X的回归。两阶段最小二乘法(2SLS)对于没有选择另外的变量作为工具变量的解释变量,可以认为自身作为工具变量。如果随机解释变量和随机干扰项的相关性主要来源于同期测量误差引起的。就可以用滞后一期的随机解释变量作为原解释变量的工具变量。解释变量的内生性(同期相关)检验:回归模型的基本假设要求随机解释变量和随机干扰项至少同期无关。即随机解释变量是同期外生变量。Step1将被怀疑是内生变量的X,关于Z1Z2做OLS)iiiiiZXYeudbbb+=2210Xi=a0+a1zi1+a2zi2+vi)得到残差vStep2将得到残差v带入到原来的模型中进行OLS)如果d显著为0,则表明随机解释变量和随机干扰项同期无关。第五章经典单方程计量经济学模型:专门问题虚拟解释变量;滞后解释变量和滞后被解释变量;模型设定偏误第一节虚拟解释变量有些影响因素无法量化,为了将这些因素引入模型中,提高模型精度,只能引入一些人工的变量即虚拟变量。同时含有一般解释变量与虚拟变量的模型称为虚拟变量模型或者方差分析(analysis-ofvariance:ANOVA)模型。1、定义:根据这些因素的属性类型,构造只能取0(比较类型和否定类型)或1(基础类型和肯定类型)的人工变量,通常称为虚拟变量。2、虚拟变量的引入加法方式截距乘法方式斜率3、虚拟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全工程专业资格(安全工程师)备考题库及答案解析
- 2025年工程监理专业技术资格(注册监理工程师)《建筑工程管理》备考题库及答案解析
- 2025年护理学硕士专业《临床护理技能培训》备考题库及答案解析
- 商铺消防设备合同协议2025
- 2025年员工离职面谈与留任策略考试试题及答案
- 教育培训合作合同协议2025
- 健身房会员管理合同协议2025
- 国企业借用车辆协议书
- 墙体立面设计合同范本
- 国企业投资合作协议书
- (正式版)YBT 6328-2024 冶金工业建构筑物安全运维技术规范
- 供方准入评价管理规定
- 2024年度《知识产权》全套课件
- 自学考试中国近代史纲要真题及答案
- 基孔肯雅热的个案护理
- 本科毕业生怎样写论文(培训)
- 《自制简易净水器》课件
- 高中英语新人教版必修第一册Unit2READING说课稿
- 守岛战士生活艰苦的资料
- 歌曲演唱 万疆
- 展厅报价清单
评论
0/150
提交评论