平顶山一矿矿井设计毕业论文.doc_第1页
平顶山一矿矿井设计毕业论文.doc_第2页
平顶山一矿矿井设计毕业论文.doc_第3页
平顶山一矿矿井设计毕业论文.doc_第4页
平顶山一矿矿井设计毕业论文.doc_第5页
已阅读5页,还剩91页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南理工大学成人高等教育采矿工程专升本毕业设计(论文)平顶山一矿矿井设计毕业论文目 录第一章 矿井概况及井田地质特征1第一节 矿井概况1一、位置与交通1二、地形与河流1三、气候与气象2四、地震2第二节 地质特征2一、地层2二、构造2三、煤系及煤层3四、煤质3五、水文地质3六、其它开采技术条件10第三节 勘探程度与建议13一、勘探程度评述13二、建议13第二章 矿井储量、年产量及服务年限15第一节 井田境界15一、井田境界15二、工业指标15第二节 井田储量15一、矿井工业储量15二、矿井设计储量16三、矿井设计可采储量17第三节 矿井年产量及服务年限19一、矿井工作制度19二、矿井设计生产能力19第三章 井田开拓21第一节 概述21第二节 井田开拓21一、提出方案21二、方案比较22第三节 井筒特征25一、井筒断面尺寸25二、井壁的支护材料及井壁厚度27三、井筒深度27第四节 井底车场29一、井底车场形式的选择29二、线路总平面布置29三、井底车场通过能力计算36四、确定井底车场主要巷道断面38五、井底车场硐室38六、其他硐室40第五节 开采顺序及带区、采煤工作面的配置40一、开采顺序40二、保证年产量的同采采区数和工作面数41第六节 井巷工程和建井工期43第四章 采煤方法47第一节 采煤方法的选择47第二节 带区巷道布置及生产系统48一、带区斜长的确定48二、煤柱尺寸48三、巷道布置48四、带区斜巷的布置48五、带区联络巷道及下部车场49六、带区硐室49七、带区生产系统50第三节 回采工艺设计50一、概述50二、综采工作面回采工艺设计52第五章 矿井运输、提升及排水61第一节 矿井运输61一、井下运输系统和运输方式的确定61二、带区运输设备的选型62第二节 矿井提升63一、主井提升设备选型计算63二、副井提升容器的确定68第三节 矿井排水74一、概述74二、排水设备选型计算74第六章 矿井通风与安全技术措施81第一节 矿井通风系统的选择81一、选择原则81二、选择矿井主扇的工作方法82三、选择矿井通风方式82第二节 风量计算及风量分配83一、风量计算83二、风速验算85第三节 全矿通风阻力计算87一、计算原则87二、计算方法87三、计算矿井总风阻及总等积孔91第四节 扇风机选型91一、选择主扇91二、选择电动机:93三、防止漏风和降低风阻的措施93第五节 矿井安全技术措施94一、概述94二、预防瓦斯爆炸的措施94三、粉尘的综合防治95四、预防井下火灾措施96五、矿井水灾的预防措施96第七章 矿山环境保护97第一节 环保设计依据和采用的标准97一、设计依据97二、环保标准97第二节 主要污染源及治理措施97一、污废水排放97二、环境空气污染98三、噪声及绿化98第三节 地表沉陷及其治理98第四节 水土流失防治措施98结论100致谢101参考文献102附录A英文翻译(原文)103附录B英文翻译(译文)109不要附录A、B中英文翻译(原文)及其内容。可以把图纸名称列入附录:1、矿井开拓方式平面图2、矿井开拓方式剖面图3、采区巷道布置及机械设备配置平面图4、采区巷道布置剖面图55第一章 矿井概况及井田地质特征第一节 矿井概况页眉、章节标题、正文大小标题(加粗)及正文内容需要根据成教院排版格式进行认真排版,请联系成教院索取排版格式电子版本一、位置与交通淮南矿业集团顾桥井田位于安徽省淮南市凤台县城西北约20km处,地理坐标为东经11626151163700,北纬324347325230。井田内有凤(台)阜(阳)和凤(台)利(辛)公路纵贯;井田外东部经有凤(台)蒙(城)公路,南部通有袁(集)李(凤郢子)矿区公路和淮(南)阜(阳)铁路。潘谢矿区铁路自东向西穿过本井田。井田内的永幸河和西南外缘的西淝河均可通航民船,并可转接淮河水运,交通方便,见图1-1-1。图1-1-1交通位置图二、地形与河流本井田位于淮河冲积平原,地形平坦,除西淝河与岗河沿岸一带地势低洼、雨季易成内涝以外,地面标高一般为2124m。总体地势为西北高、东南低。永幸河由西北至东南流经井田中部;而与永幸河流向相同的西淝河则流经井田西南缘外侧,在鲁台孜入淮,是地表水集中排放的主渠道。此外,井田内尚有纵横交错的人工沟渠。三、气候与气象井田所在地区属季风暖温带半湿润气候,季节性明显,冬冷夏热。该地区年均气温15.1,两极气温分别为41.2和-22.8;一般春、夏季多东南及东风,秋季多东南及东北风,冬季多东北及西北风,平均风速3.18m/s,最大风速20m/s;年均降雨量926.33mm,最大达1723.5mm;雪期一般在每年11月上旬至次年3月中旬,最大降雪厚度16cm;土壤的最大冻结深度为30cm。四、地震根据中国地震烈度区划图(1990)的使用规定,本井田地震基本烈度为6度。第二节 地质特征一、地层顾桥井田属全隐蔽含煤区,钻探所及地层由老到新依次有奥陶系、石炭系、二叠系和新生界。二、构造本井田位于淮南复向斜中部,属陈桥背斜东翼与潘集背斜西部衔接带。煤系地层总体形态为一走向近南北、倾向东、倾角多为515的反“S”型单斜构造。其中发育有一系列宽缓褶曲和断层。根据褶曲和断层发育特点,可将本井田划分为北部宽缓褶曲挤压区、中部简单单斜区、中南部“X”型共轭剪切区和南部单斜构造区四部分。经综合精查地质勘探和高分辨率数字地震补充勘探,全井田共查出小陈庄背斜、胡桥子向斜、后老庄背斜和桂集向斜等次一级褶曲4个。发现断层67条,其中正断层37条,逆断层30条,大致可分为近东西向、北西向和北东向三个断层组。按落差大小来分,大于等于100m的13条,小于100m而大于等于50m的11条,小于50m而大 于等于20m的45条,小于20m而大于等于10m的63条,小于10m的35条。此外,尚有21个孤立断点未能组合成断层。主要断层特征见表1-2-1。三、煤系及煤层本井田的煤系地层为石炭、二叠系,其中二叠系的山西组与上、下石盒子组为主要含煤层段。井田内二叠系含煤层段总厚734m,含煤33层,煤层总厚度为30.08m,含煤系数为4.10%,自下而上依次分为7个含煤段。在中、下部厚约490m的一五含煤段中,集中分布9层可采煤层,平均总厚24.11m。其中13-1、11-2 、8、6-2和1煤层为主要可采煤层,平均总厚21.14m;17-2、13-1下、7-2和4-1为局部可采煤层,平均总厚2.97m。可采煤层主要特征详见表1-2-2。四、煤质本井田可采煤层煤质稳定,煤种单一,属中灰富灰、特低硫、低磷特低磷、富油高油、高熔难熔灰分、具较强粘结性的气煤和1/3焦煤。可作良好的配焦和动力、化工用煤。各主要可采煤层煤质特征见表1-2-3,煤的工业分析见表1-2-4。五、水文地质本井田水文地质条件属巨厚覆盖层下多煤层、多含水层、充水因素复杂的矿床,其富水性属简单中等,与地表水体无水力联系。表1-2-1 主 要 断 层 特 征 表 表格调整为1页,尽量不要断为2页;如果必须断为2页,可列续表名称性质走向倾 向倾 角(度)落差(m)延展长度(km)可靠性名称性质走向倾向倾角(度)落差(m)延展长度(km)可靠性F81正NEEN60653004.0可靠FD92-2正NWSW700201.5可靠F81-1正NEEN60652006.0可靠FD92-3正NWSW750220.5可靠性差F81-2逆NEES4550582707.0可靠FD92-6正NWSW65700452.0可靠F84逆NWS3065153006.0可靠F93正NESE750261.9可靠F81-1逆NWSW5060332.0可靠F94正NWWS75800403.0可靠F85逆NWS506512505.9可靠F94-1正NWNE500200.4较可靠F86-1逆NWSW556501404.0可靠F94-2正NWNE308400.5较可靠F85-3正NWNE257035402.0可靠F95正NESE700441.0可靠F86正NEEEWSSES5570257012.0可靠F95-2正NWSW550480.9可靠F86-1正NEES50550351.15可靠F97正NESE55650424.5可靠F87正EWS55750705.6可靠F99正NESE60750201.1可靠F87-1正NENW600251.5可靠F100正NWNE7580151406.0可靠F88正NWSW55600200.82可靠F101正NWNE750400.8可靠F90正NWNE55600443.1可靠性差F102正NWSW60650203.5可靠性差F90-1逆NWNE600270.83可靠性差F103正NENW6070501405.5可靠F92正NWSW65750763.0可靠FD103-1正NWSW700250.3较可靠FD92-1正NWWS650201.0可靠F101逆NWNE60750972.6可靠(一)主要充水因素本井田基岩被厚度介于224.10576.00m之间的西北厚、东南薄的新生界松散层所覆盖。按松散沉积物组合特征及其含、隔水性能不同,自上而下大致可分为4个含水组、4个隔水组和1个碎石层。其中第三隔水组除在局部古地形隆起处变薄或缺失外,绝大部分分布稳定,厚度一般为3055m,系其上、下含水层间的良好隔水层。第四含水组在七线以北与基岩直接接触,厚度多为3080m,系基岩含水组的主要补给水源。底部的碎石层若与含水层接触时,有可能起到一定的导水作用。二叠系砂岩以中、细粒为主,局部裂隙发育,一般为钙质充填,富水性弱,以储存量为主,且因间夹泥岩和煤层,含水组之间在自然状态下无密切的水力联系。但是,若被断层切割或受采动影响而致地下水水力均衡遭到破坏时,上、下含水层之间有可能互相沟通,从而导致局部砂岩裂隙水突溃现象的发生。石炭系太灰岩溶裂隙含水组主要由自上而下编号的13层灰岩与其间的泥岩、粉砂岩和薄煤层组成。其中第1、3、4、5和12层灰岩分布稳定,并以第3、4和12层灰岩厚度较大。该含水组上距1煤层较近,一般为1620m,且灰岩水压较高,如果直接开采1煤层,必将因太灰的水压超过1煤层底板隔水层抗压强度而引发突水事故。潘谢矿区资料表明:奥陶系灰岩中下部岩溶裂隙比较发育,虽分布不均,但富水性弱中等,系太灰的主要补给水源。本井田断层带多为泥岩和粉、细砂岩碎块充填,并呈胶结状,正常情况下可起到相对隔水作用。但是,若不同层位的含水层受断层切割而对口,且断层带又未被泥质和岩屑所充填,或受到采动影响,导致断层活化,破坏了地下水的水力均衡,断层带则很可能成为地下水突溃的主要途径。综上所述,本井田新生界第四含水层孔隙水、二叠系砂岩裂隙水和石炭系太灰岩溶裂隙水对井下开采均有较大影响。但是,只要在可采煤层浅部留设适当的防水煤柱,四含水一般不致于溃入矿坑而对煤层开采构成大的威胁。这样,二叠系砂岩裂隙水和石炭系太灰岩溶裂隙水便成为本矿井开采的主要充水因素。表1-2-2 可采煤层主要特征表煤层厚度(m)最小最大平均间距(m)顶 板 岩 性底 板 岩 性结 构可采性稳定性17-204.350.97泥岩和中砂岩泥 岩简 单局部可采不稳定10413-11.708.254.65泥岩,局部为细砂岩泥 岩较间接全区可采稳 定113-1下01.850.56泥 岩泥 岩简 单局部可采不稳定7411-20.897.233.10浅部为中、细砂岩,其它地段为泥岩泥 岩简单较简单全区可采稳 定80805.152.52古河流冲蚀处为石莫砂岩,其余为泥岩泥岩,局部为含炭泥岩简 单大部可采较稳定47-202.940.76泥岩,局部为砂岩泥岩,局部为砂岩较间接局部可采不稳定416-20.607.103.41泥岩,局部为砂岩泥 岩简 单基本全区可采稳 定404-105.200.68泥 岩泥 岩简 单局部可采不稳定8311.8511.897.46砂质泥岩,部分为砂岩砂质泥岩较复杂全区可采稳 定表1-2-3 可 采 煤 层 物 理 性 质煤层名称颜 色结构、构造光 泽煤岩成份煤岩类型其它17-2黑色局部灰黑色粉末状为主,少量块状、鳞片状暗淡光泽油脂光泽。暗煤为主,亮煤次之,夹少量镜煤条带。半暗型为主,少量半亮型。13-1黑 色上部块状为主,下部粉末状为主,局部少量鳞片,片状。弱玻璃光泽玻璃光泽暗煤、亮煤为主,夹镜煤条带。半暗型半亮型。局部内生裂隙发育13-1下黑 色块状为主,次为鳞片、片状粉末状暗淡光泽玻璃光泽暗煤为主,次为亮煤,夹少量镜煤条带。暗淡型半暗型,少量半亮型。11-2黑 色块状粉末状,少量鳞片、片状暗淡光泽油脂光泽。亮煤、暗煤为主,夹少量镜煤条带。半暗型半亮型。8黑 色粉末状为主,次为块状,、片状、鳞片状弱油脂光泽油脂光泽暗煤、亮煤为主,夹少量镜煤条带及丝炭。半暗型半亮型。7-2黑 色碎块、块状为主,次为粉末状弱玻璃光泽玻璃光泽暗煤为主,亮煤次之,夹少量镜煤条带。半暗型。6-2黑 色粉末状为主,次为块状,鳞片状,片状弱玻璃光泽玻璃光泽少量暗淡光泽暗煤、亮煤为主,夹少量镜煤条带及线炭。半亮型半暗型。部分地区下部煤质较上部好4-1黑 色块状为主,局部粉状和片状油脂光泽。暗煤、亮煤为主,夹少量镜煤条带和丝炭。半暗型半亮型。1黑 色粒状,粉末状为主,少量块状、鳞片状弱油脂光泽油脂光泽,少量玻璃光泽。暗煤、亮煤为主,夹少量镜煤条带及丝炭。半亮型半暗型。局部内生裂障发育,含黄铁矿表1-2-4 煤层煤质特征汇总表 项目数煤 值层 名称牌号水分Mf(%)灰分Ag(%)灰分Ag精煤(%)灰发份Vr(%)胶质层厚Y(m)粘结指数G容重(cm3)含硫量S(%)含磷量P(%)发热量Q(J/g)Tf(%)T2()最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)最小最大平均(数)17-2焦煤0.732.681.91(21)17.7632.6325.10(19)8.5413.9410.71(17)38.3342.8439.88(17)71710.8(10)718475.4(5)1.271.651.41(10)0.250.820.39(16)0.00120.01190.0036(6)530966265936(15)7.1311.869.61(6)11901500/31396(50)13-1气煤0.702.631.52(82)11.1832.3119.20(82)7.4014.079.81(80)37.9345.4841.75(79)816.511.7(68)44.29071.7(20)1.241.551.40(61)0.120.610.27(75)0.00070.09880.0308(43)587584356621(77)10.216.9913.48(24)12051500/121388(19)13-1下焦煤0.802.261.49(13)21.4235.9829.46(13)8.9314.2211.33(11)37.9644.5241.48(11)911.510.3(5)627468(2)1.251.561.44(9)0.170.720.325(11)0.00270.00330.0031(3)490363845665(12)10.012.3410.81(8)1500/31500(3)11-21/3焦煤1.022.651.76(77)15.4632.8021.38(76)5.5513.418.20(75)33.9639.8736.53(75)6.513.510.2(65)609378.7(13)1.331.601.39(43)0.282.060.62(66)0.00110.04460.0105(37)549667466293(62)7.5112.349.82(16)12851500/141303(6)81/3焦煤0.712.671.76(60)12.3430.3221.35(60)6.5313.089.15(56)33.1539.5336.71(56)6.521.511.4(46)358473.7(13)1.301.501.41(26)0.121.010.37(50)0.00070.01660.0095(23)544570706253(49)7.2511.309.45(15)12701500/51386(8)7-21/3焦煤0.562.361.59(27)16.6033.0024.48(26)6.9814.649.50(26)34.1838.3236.82(26)91310.8(16)538575.8(9)1.351.631.43(14)0.190.810.48(22)0.00150.00570.0028(11)519567325962(23)7.9810.309.45(5)1500/31500(3)6-2气煤、1/3焦煤0.603.351.61(64)12.7736.9920.81(63)5.8913.859.56(62)34.4640.4738.20(63)1016.512.5(50)24.99074.73(15)1.241.551.37(25)0.272.850.51(55)0.00110.01000.0036(30)497771186394(56)7.513.0211.20(15)13251500/51426(10)4-11/3焦煤0.952.401.74(14)18.9737.3927.57(13)7.1411.068.51(10)33.4737.3035.73(11)91210.3(3)328678(1)1.291.521.38(4)0.401.530.93(9)0.00190.00320.0025(4)488464285732(10)6.609.388.26(3)14801500/11490(2)1气煤、1/3焦煤0.652.121.41(67)8.2732.9715.69(66)4.3715.227.42(66)33.7542.2636.86(67)10.52014.1(63)27.89379.51.251.541.35(31)0.234.960.903(61)0.00140.07440.0109(32)552176096893(62)9.4312.6810.76(15)11501500/21307(22)(二)矿井涌水量预计预计方法为顾桥井田电子版精查地质报告汇编中采用的水文地质比拟法。经与新庄孜矿井实测涌水量比拟表明:矿井开采11-2煤层时的正常涌水量按850m3/h计取,最大涌水量增加1000m3/h。六、其它开采技术条件(一)主要可采煤层顶底板岩石力学特征本井田主要可采煤层顶板主要由泥岩、砂质泥岩和少量砂岩组成;底板均为泥岩和砂质泥岩。顶、底板泥岩、砂质泥岩的抗压强度较低,平均介于342513kg/cm2,砂岩的抗压强度较高,平均介于5711224kg/cm2。但总体来看,本井田主要可采煤层顶、底板岩石工程地质条件比较差,巷道支护和顶板管理比较困难。望有关部门加强井下工程地质研究工作,确保矿井建设与生产的安全。(二)瓦斯本井田共采集13-1、11-2、8、7-2、6-2和1煤层瓦斯样125个。其中主要可采煤层瓦斯测试成果见表1-2-5。根据本井田主要煤层瓦斯测试成果与潘谢矿区生产矿井瓦斯资料综合分析,本矿井应属高瓦斯矿井。随着矿井开采深度的增加,局部可能出现煤与瓦斯突出现象。(三)煤尘与自燃本井田可采煤层除6-2和11-2煤层不自燃不很易自燃以外,其余均为很易自燃煤层。主要可采煤层的煤尘均具有爆炸性。(四)地温根据淮南矿区九龙岗矿长观孔资料,本井田所在地的恒温带深度为自地表向下30m,恒温带温度为16.8。已有测温资料表明:本井田属于以地温异常区为主的高温区,平均地温梯度为3.08/100m。从纵向上看,垂深500m处平均地温在31以上,已达一级高温区;垂深700m处平均地温在37左右,已进入二级高温区;垂深在800m处平均地温高达40以上。预计-780m水平地温可达37.743.7,平均40.1。从横向上看,地温等值线的走向具有与煤层底板等高线走向基本一致的变化趋势。鉴于本井田地温较高,有关部门应引起高度重视,并采取积极的降温措施,以防各类热害发生。表1-2-5 主要可采煤层瓦斯测试成果表 煤层新地层厚度(m)基岩盖层厚度(m)瓦斯含量 (m3/t)瓦斯成份 (%)CH4CO2CH4CO2N213-111-286-21第三节 勘探程度与建议一、勘探程度评述 顾桥井田从1966年至1980年间在原有勘探区内先后施工钻孔387个,井田范围扩大后,又增加了原属张集、丁集二井田的部分钻孔49个、顾桥煤层气测试井1个和井筒检查孔7个,全井田共有钻孔444个,钻探工程量346528.70m。其中地质孔407个,工程量326336.65m;水文孔37个,工程量20192.05m,抽水25次。此外,还施工了供水水源详勘孔56个,工程量5885.81m。上述钻孔绝大部分实施了测井工作。为配合原有勘探区的资源勘探工作,还进行了光电和模拟地震勘探,共施工测线长1661.08km,计22786个物理点。为了进一步查明地质构造及主要煤层的赋存状况,1995年又对原勘探区大部分区段进行了高分辨率数字地震补充勘探,完成测线总长781.5km,物理点计35470个,目前即将完成首采块段三维地震勘探工作。实践证明:在资源勘探过程中,采用地震先行、钻探验证、测井定厚的综合方法是合理的,地震和钻探工程在一水平和首采区进行加密控制是正确的,而后期又对生产水平和地质勘探程度偏低的深部及南部实施高分辨率数字地震勘探也是必要的。经过上述各阶段勘探工作,控制了本井田总体地质构造形态,查明了主要断层和褶曲的发育情况,查明了可采煤层层位、厚度、结构、可采范围和煤质特征,查明了水文地质条件及供水水源的水质类型,确定了主要供水含水层,并对其它开采技术条件作了详细了解,地质勘探研究程度是比较高的。因此,本井田2001年的精查地质报告汇编与其所依据的1980年的综合勘探精查地质报告、1988年的供水水文地质详勘报告、1995年的地震补充勘探报告和2001年以前施工的井筒检查孔资料,均可作为矿井设计的依据。二、建议(一)总体来看,本井田的钻孔密度并不太高。尽管中部和浅部钻孔较多,但是,深部和南部钻孔偏少,除构造以外,其它地质特征的勘查程度尚比较低。为确保矿井生产后期顺利接替,建议在适当时期追加一定量的钻探工程,进一步查明或验证深部及南部地质特征。(二)由于本井田先期施工的部分钻孔封闭质量较差,甚至有少量钻孔未予封闭,因而对井下开采十分不利,尤其是那些至太灰终止的钻孔,封闭不好或未予封闭,很可能成为矿井生产的隐患。为此,建议在矿井建设和生产过程中,采取积极的预防措施,避免可能由此而造成的危害。(三)本井田煤层下距石炭系太灰一般只有1620m,如果直接开采,势必会太灰水压过大而破坏1煤层的隔水底板,或沿落差较大且未被岩屑和泥质物充填的断层向矿坑突水,对矿井安全构成巨大威胁。显然在矿井开采初期,不能将1煤层作为首采对象,只有到矿井后期,才能考虑其开采问题。当然,在后期正式开采1煤层之前,还需对太灰补做专门的水文地质工作,以便在掌握可靠的水文地质资料的基础上,采取疏水降压等切实可行的措施,确保安全生产。(四)按照煤矿安全规程(2001)的规定,煤的自燃倾向性分为容易自燃、自燃和不易自燃三类,这一划分标准显然与此前分为很易自燃、易自燃、不易自燃和不自燃四级具有较大变化。为确保井下生产的安全,建议对本井田煤的自燃倾向性按新分类标准重新界定,以便根据新的分类结果,采取预防煤层自燃的综合措施。第二章 矿井储量、年产量及服务年限第一节 井田境界一、井田境界 毕业设计的井田境界:北起F87断层,南至F92断层,西起煤层露头,东至850m煤层底板等高线。走向长为5.3Km,倾向长为3.9 Km,井田面积?。参加储量计算的煤层为:11-2煤层。煤层计算面积约21Km2 ,煤层厚0.897.23m,平均厚3.1m,结构较简单。煤层平均容重为1.4t/ m3。二、工业指标区内煤层储量计算采用的工业指标,参照现行规范,统一为:最低可采厚度0.70m,最高可采灰份40;第二节 井田储量一、矿井工业储量工业储量采用地质块段法,在煤层底板等高线上计算储量。本井田采用块段法计算的各级储量,块段法是我国目前广泛使用的储量计算方法之一。块段法是根据井田内钻孔勘探情况,由几个煤厚相近钻孔连成块段。根据此块段的面积,煤的容重,平均煤厚计算此块段的煤的储量,再把各个经过计算的块段储量取和即为全矿井的井田储量。计算公式:Q A M D10-4其中:Q工业储量(万吨) A计算面积(m2) M计算采用厚度(m) D煤层平均容重(吨/m3)矿井工业储量是勘探(精查)地质报告提供的“能利用储量”中的A、B、C三级储量之和,其中高级储量A、B级之和所占比例应符合表2-2-1的规定。经块段法计算本设计矿井工业储量汇总见表2-2-2。表2-2-1 矿井高级储量比例 地质开采条件储量级 井 型 别比例()简单中等复杂大型中型小型大型中型小型中型小型井田内AB级储量占总储量的比例4035253540202515第一水平内AB级储量占本水平储量比例70604060503040不作具体规定第一水平内A级储量占本水平储量的比例4030153020不作具体规定不要求表2-2-2 矿井工业储量汇总表煤层名称工业储量(万吨)备注ABABCABCAB级储量占总储量的48.3411-2煤层1969.142367.714336.854633.938970.78二、矿井设计储量矿井设计储量等于矿井工业储量减去设计计算的断层煤柱、防水煤柱、井田边界煤柱和已有的地面建筑物、构筑物需要留设的保护煤柱等永久煤柱损失量后的储量;计算公式如下:矿井设计储量工业储量永久煤柱损失永久煤柱为:井田境界、断层、铁路桥、村庄保护煤柱;永久煤柱的留设:本井田范围内无河流、断层及其他构筑物,因此只需要计算境界保护煤柱。井田境界保护煤柱的留设:井田境界处保护煤柱均留设25m。计算得总的损失煤量为159.71万吨。 故,矿井设计储量工业储量永久煤柱损失 8970.78-159.71 8811.07万吨三、矿井设计可采储量矿井设计储量减去工业场地保护煤柱、井下主要巷道及上、下山保护煤柱煤量后乘以采区采区采出率的储量。矿井设计可采储量计算公式如下:矿井设计可采储量(矿井设计储量保护煤柱损失)采区采出率保护煤柱为:工业场地、风井场地、主要巷道及上、下山保护煤柱。1、工业场地保护煤柱的计算:按规范规定,年产90万t/a的中型矿井,工业场地占地面积指标为1.2公顷/10万吨。故可算得工业场地的总占地面积:S1.2910.8公顷108000 m2。工业广场占地面积为270400m2,平面形状为矩形。根据垂直剖面可计算工业广场的保护煤柱的留设:计算如下所示:表2-2-3 工业广场保护煤柱设计参数表煤层倾角( )煤厚(m)松散层厚(m)( )( )( )( )埋深(m)43.19045707070700其中:表土层移动角;煤柱上山移动角;走向方向移动角;煤柱下山移动角;用垂直剖面法留设工业广场保护煤柱如下图所示:图2-2-1 工业广场保护煤柱上图中还要标出工业广场长、宽,煤柱宽度、煤柱斜长数据,不标英文符号上图中,四边形ABCD的面积即工业场地煤柱的压煤面积,经计算可得,工业场地共压煤326.4万吨; 2、井下主要巷道设计煤柱损失计算井下主要压煤巷道为皮带大巷、轨道大巷和回风大巷,三条水平大巷之间设计间距为30m,巷道两侧各留40m保护煤柱,计算出井下主要巷道设计煤柱损失为322.03万吨。矿井储量汇总表如下表2-2-4所示。表2-2-4 可采储量汇总表开采水平煤层名称工业储量(ABC)万吨矿井设计储量(万吨)矿井可采储量(万吨)永久性煤柱损失设计储量设计煤柱损失可采储量断层境界构筑物其他工业场地井下巷道其他111-28970.780159.71008811.07326.4322.0306530.11合计11-28970.780159.71008811.07326.4322.0306530.11第三节 矿井年产量及服务年限一、矿井工作制度本矿井设计年工作日为300天。每天三班作业,其中二班生产、一班检修。每班工作8h,每天净提升时间14h。二、矿井设计生产能力矿井设计生产能力:90万t/a。矿井服务年限:T式中:T矿井设计服务年限,a;矿井可采储量,Mt;A矿井设计年产量,Mt/a;K储量备用系数,K1.4。即得:T 52a 50 a 符合矿井服务年限要求若设计生产能力为120万t/a。则矿井服务年限:T 3960 a不符合矿井服务年限要求。所以此矿井设计生产能力为90万t/a,设计服务年限为52年。 第三章 井田开拓第一节 概述该井田可采煤层为11-2煤。11-2煤层瓦斯含量高,且有煤与瓦斯突出危险。井田地质条件简单,煤层倾角平均4,厚度平均3.1米。矿井正常涌水量为850m3/h,属1/3焦煤。走向长为5.3Km,倾向长为3.9Km。第二节 井田开拓一、提出方案根据以上地质条件以及现有的生产开采技术。提出以下三种开拓方案。方案一:立井两水平开采(立井直接延深至二水平);其剖面图如下图所示:以下各图还要标出一、二水平井底车场、石门、大巷;方案二暗斜井;方案三斜井角度过大1主井 2副井图3-2-1 方案一剖面图方案二:立井两水平开采(暗斜井延深至二水平),其剖面图如下:1主井 2副井图3-2-2 方案二剖面图方案三:斜井两水平开采;其剖面图如图所示:1主井 2副井图3-2-3 方案三剖面图 二、方案比较1技术比较方案一与方案三区别在于井筒形式不同。两方案的生产系统比较简单可靠,但由于采用斜井开拓时需要预留的斜井保护煤柱将要比立井多,同时斜井井筒长度长于立井,由此,将增加排水费用;而且也比立井难于支护,将增加后期维护费用。所以方案一优于方案三,可以排除方案三。余下的方案一与方案二均在技术上可行,且基建费与生产经营费不易区别多少,故需要进行经济比较。2经济比较对于方案一与方案二进行经济比较,详见以下各表。以下表格宽度尽量一致,显得美观表3-2-1 基建工程量方案项目方案1方案2工程量 /m工程量 /m初期主井井筒744744副井井筒719719风井井筒714714井底车场700700后期主井井筒1602200(暗斜井)副井井筒1602200(暗斜井)风井井筒1602400(暗斜井)井底车场700100石 门2100表3-2-2 基建费方案项目方案1方案2工程量/m单价元/米费用/万元工程量/m单价元/米费用/万元初期主井井筒7448944.91665.57448944.91665.5副井井筒7198944.91643.147198944.91643.14风井井筒7148944.91638.677148944.91638.67井底车场7006746.09472.237006746.09472.23后期主井井筒16011258.04180.1322002951649.22副井井筒16011258.04180.1322002951649.22风井井筒16011258.04180.1324002951649.22井底车场7003962.43277.371003962.4339.62石 门21002840.24596.45总计3833.754406.82斜井单价过低表3-2-3 生产经营工程量表方案项目方案1方案2工程量工程量立井提升/万tkm二水平1.23220.280.161.23220.282.2石门运输/万tkm二水平1.23220.282.1排水/万立方米二水平6002436535.788502436535.783-2-4 生产经营费方案项目方案1方案2工程量/万tkm单价/元/(tkm)费用/万元工程量/万tkm单价/元/(tkm)费用/万元立井提升618.294.779有误2967.178501.540.929有误7897.93石门运输8115.111.142 有误9267.46排水费4262.682.287有误9748.7540611.940.323有误13117.66总计21983.3821015.59表3-2-5 综合比较方案项目方案一方案二费用(万元)百分率()费用(万元)百分率()基建工程费3833.751004406.82119.32生产经营费21983.38104.6121015.59100总费用25817.13101.5525422.411003综合比较从以上列表可以看出,方案二比方案一节省投资394.72万元。在技术可行的情况下,就经济方面来考虑,方案二优于方案一。因此,通过技术和经济比较,本设计矿井拟采用方案二:立井单水平加暗斜井开拓方案。总费用相差10以内者,方案二与方案一经济上视为相近,综合比较内容需要补充第三节 井筒特征一、井筒断面尺寸1、主井主井主要用于提煤。井筒直径5.0米,采用1对9t提

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论