




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
系泊系统的设计摘要本文为系泊系统的设计问题,根据题目要求建立了数学模型,计算出系泊系统在不同条件下的具体参数,并利用模型对系泊系统进行优化分析,使其能运用到更广的领域。针对问题一,首先分析了锚链的形状,利用微积分原理求出锚链的静态方程,用Matlab画出锚链形状,得出锚链的形状所符合悬链线方程。然后把钢管、钢桶看成一个整体,并忽略钢管和钢桶倾斜引起的锚链上端高度的变化,分析出锚链的长度和锚链末端与海平面的夹角对吃水深度的影响,又对钢桶、钢管和浮标进行了受力和力矩分析。最后建立了数学模型,计算出风速为12m/s和24m/s时,钢桶和各节钢管的倾斜角度(见表2),浮标吃水深度分别为0.737m、0.752m,浮标的浮动区域(此浮动区域是以锚为圆心的圆)面积分别为 、 ,锚链的形状如图(5-11)、(5-12)所示。针对问题二,由问题一中建立的系泊系统的模型,计算风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。得到了钢桶和各节钢管的倾斜角度如(表3),浮标吃水深度:0.787m,以及游动区域面积:1229.39m 。由于重物球的质量变化影响锚点与海床的夹角,可以通过调节重物球的质量控制锚点与海床的夹角。分析得出当锚点与海床的夹角处于临界点(即16度)时,重物球的最小质量为1756.8kg;当浮标刚好没入水中时,重物球的最大质量为5335.8kg。针对问题三,以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域为目标函数,分析动态优化问题。与问题一、二不同的是:此问题给定了水深、海水速度、风速的取值范围,属于模型动态变化问题。所以对模型进行了动态分析,求得钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的取值范围,进而分析水深、海水速度、风速对结果的影响,这有利于系泊系统的调整和应用。本文所建立的模型对相关问题在理论上作了证明,虽然对部分模型进行了简化,但是实用性很强,而且易于推广,能够扩展到其他系泊系统。关键词:微积分 整体分析法 系泊系统 悬链线方程 力矩平衡271、 问题重述近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图5-3所示)。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。问题1:某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025103kg/m3的海域。若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。问题2:在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。问题3:由于潮汐等因素的影响,布放海域的实测水深介于16m20m之间。布放点的海水速度最大可达到1.5m/s,风速最大可达到36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 海风荷载可通过近似公式 计算,S为物体在风向法平面的投影面积(m2),v为风速(m/s)。海水流力可通过近似公式 计算,其中S为物体在水流速度法平面的投影面积(m2),v为水流速度(m/s)。表1 锚链型号和参数表型号长度(mm)单位长度的质量(kg/m)I783.2II1057III12012.5IV15019.5V18028.12二、问题分析2.1问题一分析 问题一要求在海水保持静止时,海面风速分别为12m/s和24m/s时,求钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。 首先,我们把浮标、钢管、钢桶、铁球看成一个整体,分析可知锚链的形状符合悬链线方程。题目中给出钢桶的倾斜角度不能超过5度,可知钢桶和钢管的倾斜角度都很小,我们把钢管、钢桶看成一个整体,假设倾斜角度在0度到5度之间,计算发现他们竖直高度变化只有0.019m,这个变化对锚链上端的高度影响几乎没有,于是我们忽略钢管和钢桶倾斜引起的锚链上端高度的变化。然后我们分析了锚链的形状,发现锚链下端切线可能水平或与水平面存在一定的夹角,其中,切线水平时锚链可能有一部分在海底面上,这样锚链下端与锚之间的力或锚链处在拉伸完状态时海底面上的部分是导致浮标吃水深度变化的直接因素,在锚链下端,我们得出如下锚链形状的数学模型公式: 其中 , 为锚链所受水平分力,为锚链单位长度质量。最后,我们根据所求锚链长度L整体分析求出浮标吃水深度、浮标浮力,对每个钢管和钢桶单独受力分析,并进行力矩平衡分析求出倾斜角度,最后根据锚链形状算出游动区域。2.2问题二分析针对问题二,我们首先运用问题一当中所建立的数学模型,求出钢桶和各钢管的倾斜角度,锚链形状和浮标游动区域,可明显看出锚链与海床的夹角大于16度,所以这时我们考虑通过增加重物球的质量来控制夹角,求极限状态下即角度为16时的重物球的质量,同时保证钢桶的倾斜角小于5度,以分析出重物球的质量满足条件的合理范围。2.3问题三分析针对问题三,以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域为目标函数,分析动态优化问题。参考公司投资组合问题中解决利润最大、风险最小,采用有效前沿的方法,利用不同情况下的风力,水流速度和水深的变化,来计算出各个目标区域的范围值。3、 模型假设1. 假设浮标垂直于海平面,不考虑倾斜情况2. 钢管不发生变形,接点可灵活转动3. 锚链可近似看成长绳,忽略锚链的浮力4. 重物球只考虑重力,浮力忽略不计5. 假设计算得到的数据真实可靠6. 忽略钢管和钢桶的半径,看作一条线4、 符号说明 符号名称符号意义锚链任意处的拉力锚链任意处的水平拉力锚链任意处的竖直拉力锚链的长度锚链单位长度的质量重力加速度悬链线系数浮标吃水深度浮标的高物体 对物体 的拉力风速海水密度物体 与水平面的夹角物体 的重力风对浮标的水平作用力浮标的浮力锚链对钢桶的拉力钢桶到海平面的距离钢桶到海床的距离物体 的倾斜角度物体 受到的浮力水对浮标的作用力五、 模型的建立与求解根据上面的分析,对模型进行建立和求解。 5.1问题一 通过对系泊系统的整体和局部分析,建立平衡状态下的数学模型,在此基础上给出系泊系统在一定风速下各个部件的具体参数。5.1.1模型的准备5.1.1.1锚链的参数分析首先分析锚链的结构特征,锚链可看作是一个悬链线的一部分,所以假设无档普通链环的形状符合悬链线方程,且忽略锚链受到的浮力再对其进行分析。如图1所示,假设点1为锚锭点, 为虚拟锚链长度,建立坐标系使原点处锚链的切线与平面的夹角为0度 。锚点与钢桶连接处出的拉力为 ,可分解为水平拉力 和竖直拉力 ,单位长度锚链的质量为 ,对原点进行受力分析可知,原点只受一个水平拉力,当锚链长度为 时,各处张力的水平分量是一个常数,在 方向上有 ,根据勾股定理求出合拉力锚链上点的坐标 坐标满足方程图5-1 悬链线的静力分析在当前坐标系中由 计算出 悬链线的长度 令 可得到悬链线简化的方程: 其中, 为悬链线系数。利用Matab画图,分别画出 的图像,设置 步长为0.01,得到悬链线图像如图5-2所示。程序见附录“悬链线程序”。图5-2 悬链系数为2,3,4,5,6时的悬链线5.1.1.2建立坐标系对于题中所给的参考图,我们进行坐标系的建立,以锚点为原点,竖直方向为海深度,水平方向为海床平面建立坐标,如下图5-3所示,由题中已知条件我们假设吃水深度为 浮标的高度为 钢管与水平面的夹角用 表示 分别对物体进行标号,比如浮标为0,钢桶为5, 物体 对物体 的拉力表示为 ,如图5-3所示:图5-3 坐标系建立与符号说明风力和浮力分别为:5.1.2模型的建立5.1.2.1对浮标、钢管和钢桶的受力分析对浮标的受力平衡分析,假设浮标是竖直的,风和钢管1对浮标造成的力矩忽略不计,那么浮标受到浮力、重力、钢管1的拉力和风力,如图5-4所示:图5-4 浮标的受力平衡分析由于浮标系统处于平衡状态,可列出如下平衡方程:对第四节钢管的受力平衡分析,钢管受到第三节钢管和钢桶对其的拉力因为钢管保持平衡,所以满足受力平衡的条件,如图5-5所示:图5-5 钢管4的受力平衡分析 然后对其力矩平衡进行分析,钢管受到的浮力和重力在重心上,所以这两个力的合力矩为零,只考虑两端受到拉力所产生的力矩如下图5-6所示:图5-6 对钢管4力矩平衡分析由于第四节钢管处于平衡状态,所以满足力矩平衡和受力平衡两种,列出下面两组平衡方程:同理另外三根钢管也能得出如下的平衡方程组:钢管1:钢管2:钢管3:对钢桶受力平衡分析,钢桶受到第四节钢管锚链的拉力、及自身重力和重物球的重力和浮力,如图5-7所示:图5-7 钢桶的受力平衡分析然后对其力矩分析,重力和浮力都在钢桶的重心上,所以两者力矩和为零,只考虑第四节钢管,重物球和锚链的产生的力矩如下图5-8所示:图5-8 钢桶的力矩平衡分析由于钢桶处于平衡状态,所以满足力矩平衡和受力平衡,列出两组平衡方程如下:5.1.3模型的求解5.1.3.1吃水深度和锚链形状的求解把钢管、钢桶看成一个整体,由于钢管和钢桶的倾斜角度很小,我们忽略了钢管和钢桶的倾斜引起的高度变化,我们假设锚链上端到海底高度为H、钢管和钢桶竖直高度为 ,如下图5-9所示:图5-9 系泊系统简化模型把钢管、钢桶和浮标整体受力分析,可得在水平方面所受的力为:先假设锚链的在12m/s和14m/s时锚链下端切线都与水平面平行,可得锚链的形状方程如下:其中, , 为锚链所受水平分力,为锚链单位长度质量。根据以上公式对浮标、钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚整体分析可得方程如下:其中,为吃水深度,s为浮标底面面积, 为浮标、钢管、钢桶、重物球总重量 为浮标、钢管、钢桶、重物球的总浮力。可求得风速为12m/s时,浮标的吃水深度为 0.737m当风速为24m/s时,浮标的吃水深度 0.752m5.1.3.2浮标游动区域求解浮标受到海平面上的风、下方的拉力、重力和浮力的作用,因为风的方向不确定,所以浮标会在水平面上形成一个圆形的游动区域如下图5-10所示:图5-10 游动区域俯视图由图可看出游动区域主要有锚链悬链线部分形状的水平方向和钢管、钢桶倾斜水平方向距离的总和 由于钢管、钢桶的倾斜 对水平方向影响很小,在这里我们忽略不计,可以求得 关于 的方程如下:上面的约束条件如下:根据以上方程我们推断出风速 、吃水深度 和游动区域半径 的方程组如下:由上式将风速 代入可得 时的游动区域如下:代入风速 可得24m/s时浮标的游动区域如下:5.1.3.3钢管和钢桶倾斜角的求解由上方我们求出的风速在12m/s和24m/s的吃水深度和模型中钢管、钢桶的受力平衡分析和力矩平衡分析,很容易可以求得钢管、钢桶的倾斜角度如表2所示:表2物体的倾斜角度风速物体倾斜角度( )钢管1钢管2钢管3钢管4钢桶12m/s0.94050.94610.95150.95710.933624m/s3.64233.66293.68383.70493.87115.1.3.4锚链的形状 当风速分别为12m/s和24m/s可知浮标受到的水平拉力分别为226.8N,899.7N,所以悬链线系数:风速为12m/s时风速为24m/s时已知悬链线方程得 ,利用Matlab得到锚链形状如图5-11,5-12源程序见附录“风速分别为12m/s和24m/s时锚链形状程序”。图5-11 风速为12m/s时锚链形状图5-12 风速为24m/s时锚链形状5.2问题二问题二是求风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。我们需建立简化模型求出锚链下端所受的力,然后求出吃水深度和所受风力的大小,再通过调节重物球的重量来调节所受风力的大小。5.2.1模型的建立我们初步分析可看出风速在36m/s时,锚链下端切线与锚之间存在一定的夹角,于是我们先对锚链对锚拉力进行分析如图5-13所示:图5-13 锚链对锚拉力的分析由此可知:对系泊系统整体分析可得:其中, 为浮标、钢管、钢桶、重物球、锚链的总重力, 为钢管、钢桶的总浮力。由以上公式可以求得锚链下端切线与海底的夹角 和 的关系式如下:可看出在锚链下端切线 过大时,可以增加 来减小 大小, 可以通过增加重物球的重量来控制。5.2.2模型的求解当风速为36m/s浮标的吃水深度为0.787m当风速为36m/s可知浮标受到的水平拉力为1965.06N,所以悬链线系数: 28.07得到物体的倾斜角度,如表3所示:表3 风速为36m/s时物体的倾斜角度风速物体倾斜角度( )钢管1钢管2钢管3钢管4钢桶36m/s7.10527.15417.21057.37118.5376可得36m/s时浮标的游动区域面积为1229.39m。因为重物球的质量变化影响锚点与海床的夹角,通过调节重物球的质量控制锚点与海床的夹角。分析夹角为临界角度16度时,此时的重物球有最小值;当浮标下沉到极限即完全没入水中,重物球由最大值,由上建立的模型可以解出,最小值为1756.8kg;最大值为5335.8kg。5.3问题三问题三是以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的多目标优化问题。利用不同情况下的风力,水流速度和水深的变化,来计算出钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的范围值。5.3.1模型的建立5.3.1.1增加海水流速后对题目一中模型进行优化增加海水流速后,浮标在水平方向上受到三个力的作用:海水的推力、风的吹力,下方钢管拉力的水平分力。风速和海水速度的不同组合,会引起吃水深度变化对海水推力和风的吹力的合力的影响的不同。水平方向受力分析如图5-14所示:图5-14 浮标水平方向的受力分析由上分析可得其中,为物体在风向法平面的投影面积(m2),为物体在水流速度法平面的投影面积(m2)。通过分析求出不同风速和海水流速情况下,浮标所受的两者的合力通过问题一建立的模型求解。5.3.1.2增加水深变化后对题目一中模型进行优化海水深度的变化直接影响着锚链的形状,我们根据问题一所建立的模型,把海水深度变化对锚链上端坐标H影响考虑进去建立模型如图5-15所示:图5-15系泊系统模型由以上分析可得:对以上公式进行分析可知: 的变化对锚链的形状、锚链末端切线与海底的夹角和锚链长度 影响很大,且夹角易超过16度,很难对题目一建立的模型进行分析,所以我们只有改变锚链的类型和锚链的长度来进行模型的优化。6、 模型的评价与推广 优点:1. 模型充分利用了悬链线方程、力学等理论进行求解分析,结构严谨,具有科学性。2. 模型为简化模型,适用性好、实用性很强,且易于推广,能够扩展到其他系泊系统。3. 模型说明详细清晰,对在理论上问题进行了很严谨的证明。4. 模型对系泊系统的各个物体进行了详细的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目团队的项目管理和团队协作流程
- 就业实习报告写作要点
- 优化员工的绩效评价和薪酬激励
- 交通事故处理程序制度
- 职业教育教学改革项目管理办
- 2025至2030中国高压径向轴封行业发展研究与产业战略规划分析评估报告
- 2025至2030中国马铃薯纤维行业发展研究与产业战略规划分析评估报告
- 职业技能培训设施建设规范
- 石油化工装备安装规范执行执行
- 仪表工业行业发展报告撰写
- 三管防控及护理管理要点
- 公路工程标准施工招标文件(2018年版)
- 携程旅行合同电子版
- 幼儿园食品安全和膳食经费管理方案
- 食堂食品安全校长第一责任人制度
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 人教版八年级历史上册 第一、二单元 单元测试卷( 2024年秋)
- 《网络安全知识培训》课件完整版
- 物业管理服务交接方案:学校篇
- DZ/T 0462.5-2023 矿产资源“三率”指标要求 第5部分:金、银、铌、钽、锂、锆、锶、稀土、锗(正式版)
- 医务人员培训手卫生规范课件爱国卫生月
评论
0/150
提交评论