已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习 题 4.11求下列矩阵的特征值和特征向量.(1);解: 方阵的特征多项式为,方阵的特征值为.解方程组.由,得基础解系,.因此,方阵对应于的全部特征向量为(不同时为零).(2).解: 方阵的特征多项式为,方阵的特征值为,.当时,解方程组.由,得基础解系.因此,方阵对应于的全部特征向量为(不为零).当时,解方程组.由,得基础解系.因此,方阵对应于的全部特征向量为(不为零).当时,解方程组.由,得基础解系.因此,方阵对应于的全部特征向量为(不为零).2设,为的特征值.证明为的特征值.证明: 存在非零向量,使.于是,.因此,为的特征值.3已知3阶矩阵的特征值为,求.解: 记,则的特征值为,.于是.4设为阶可逆矩阵的一个特征值,证明(1)为的特征值;(2)为的特征值.证明: (1) 存在非零向量,使.于是,因此,为的特征值.(2) 因,而为的特征值,所以由题2知为的特征值.5已知3阶矩阵的特征值为,求.解: 因矩阵的特征值为,所以,.记,则的特征值为,.于是.6设有四阶方阵满足条件,求方阵的伴随矩阵的一个特征值.解: 因,故,可知的一个特征值为.由,得.因,所以.于是的一个特征值为.7已知向量是矩阵的逆矩阵的特征向量.试求常数.解: 存在的特征值,使得.故有,即得.解此方程,求得或.8设有三个线性无关的特征向量,求和应满足的条件.解: 方阵的特征多项式为,方阵的特征值为,.因有三个线性无关的特征向量,所以的几何重数等于代数重数,也即.因此.而.当且仅当时,有三个线性无关的特征向量.9设矩阵可相似对角化,求.解: 方阵的特征多项式为,方阵的特征值为,.因可相似对角化,所以的几何重数等于代数重数,即,.而.当且仅当时,可相似对角化.10设三阶方阵的特征值为,对应的特征向量依次为,求.解: 记,则有.因此,.注意是初等矩阵,知.于是.11已知矩阵与相似.(1)求和;(2)求一个满足的可逆矩阵.解: (1) 因矩阵与对角矩阵相似,故知矩阵的特征值为.由特征值的性质,我们有,.于是得方程组.求得.(2) 当时,解方程组.由,得基础解系.当时,解方程组.由,得基础解系.当时,解方程组.由,得基础解系.所以,满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025云南保山市瑞积中学招聘3人笔试考试备考题库及答案解析
- 上市融资话术
- 2025江西吉安吉州区古南镇街道社区卫生服务中心招募就业见习人员2人考试笔试参考题库附答案解析
- 2026国家知识产权局专利局专利审查协作湖北中心专利审查员招聘40人考试笔试备考题库及答案解析
- 2025紫荆学院(中央政府驻港联络办深圳联络部)招聘事业编制教研岗位人员2人考试笔试备考题库及答案解析
- 2026湖南益阳市两型建设投资集团有限公司招聘考试笔试参考题库附答案解析
- 2026年国家粮食和物资储备局直属联系单位应届毕业生招聘28人考试笔试参考题库附答案解析
- 2026年春季广东中山市东区艳阳学校教师招聘2人笔试考试参考题库及答案解析
- 2025上海生命科学研究院分子细胞卓越中心褚晏伊组招聘实验室秘书1人(AI+生物方向)考试笔试模拟试题及答案解析
- 2025四川广元青川县人力资源和社会保障局青川县卫生健康局考调县疾病预防控制中心工作人员3人笔试考试备考试题及答案解析
- 安徽大学《数字传播技术》2022-2023学年第一学期期末试卷
- can的课件教学课件
- GB/T 21649.1-2024粒度分析图像分析法第1部分:静态图像分析法
- DB34T 2127.7-2014 区域地球化学调查样品分析方法 第7部分:原子荧光光谱法砷、锑、铋、汞含量的测定
- DLT 836.1-2016 供电系统供电可靠性评价规程 第1部分:通.用要求
- 我的家乡江西-课件
- 2024全国职业院校技能大赛ZZ060母婴照护赛项规程+赛题
- 学生反邪教知识讲座
- 中班数学 数字找朋友课件
- 中式烹调菜肴培训教材
- 发展汉语初级口语(Ⅰ)第21课PPT
评论
0/150
提交评论