自动送料机的设计.doc_第1页
自动送料机的设计.doc_第2页
自动送料机的设计.doc_第3页
自动送料机的设计.doc_第4页
自动送料机的设计.doc_第5页
免费预览已结束,剩余39页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南工业大学本科毕业设计(论文)-摘要本课题所设计的自动送料机构的目的,是为了实现自动送料,消除积累误差,同时减少劳动力成本。在设计过程中,主要是设计了工作台以及工作台面上的夹紧装置和利用机械传动,滚珠丝杠的选用,以及可以实现自动送料的电机。通过对这些方面的设计和研究,可以大大减少劳动力成本,减少了误差,同时也简化了机构。这在实际生产中具有很好的推广效果和意义。关键词:工作台 滚珠丝杠 电机 机械传动43 第一章 引言1.1 课题的背景在我国和国外的生产和研究中,自动送料方式有很多种,但是在这些产品中,存在着一些问题。如日本的RF20SD-OR11机械手送料装置与冲床做成一体,从横向(侧面)送料,结构复杂,装配、制造、维修困难,价格昂贵,又不适合于我国冲床的纵向送料的要求。RF20SDOR11的结构由冲床上的曲轴输出轴通过花键轴伸缩,球头节部件联接机械手齿轮, 由伞齿轮、圆柱齿轮、齿条、凸轮、拨叉、丝杆等一系列传动件使机械手的夹爪作伸缩、升降、夹紧、松开等与冲床节拍相同的动作来完成送料,另设一套独立驱动可移式输送机,通过隔料机构将工件输送至预定位置,这样一套机构的配置仅局限于日本设备,不能应用于国产冲床。国内有的送料机构由冲床工作台通过连杆弹簧驱动滑块在滑道上水平滑动,将斜道上下来的料,通过隔料机构推到模具中心,并联动打板将冲好的料拨掉,往复运动的一整套机构比较简单, 无输送机构,联动可靠,制造容易。但机械手不能将料提升、夹紧,料道倾斜放置靠料自重滑下,如规格重量变动,则料道上工件下滑速度不一致,易产生叠料,推料机构役有将料夹紧,定位不正,增加废品率,使用也不安全。1.2 课题的意义本课题主要是护栏一系列方孔冲孔自动送料机构设计。现在要求设计自动送料机构,实现自动送料,消除积累误差,同时可以减少劳动力成本。目前在生产中还是采用手工模式,即是一人看一台机器,人工送料,这种生产模式生产效率很低,既浪费劳动力也会让工人很疲倦,而且人工送料会产生累积误差。为了解决这些问题,减少生产成本,结合国内外送料机构的特点,采用伺服电机与送料机构为配合的主要装置。设计了具有推广意义的自动送料机。1.3 两种典型的送料机构1.3.1气动送料机1)冲床自动送料机的技术状态 本文介绍的冲床自动送料机是一种用于冷挤压套圈类零件的送料机器,是冲床进行技术改造的理想附机。该送料机克服了国内外有关冲床送料机的不足。如日本的RF20SD0R11机械手送料装置与冲床做成一体,从横向(侧面)送料,结构复杂,装配、制造、维修困难,价格昂贵,又不适合于我国冲床纵向送料要求。RF20SD0R11结构由冲床上曲轴输出轴,通过花键轴伸缩,球头节部件联接机械手齿轮,由伞齿轮、圆柱齿轮、齿条、凸轮、拨叉、丝杆等一系列传动件使机械手的夹爪作伸缩、升降、夹紧、松开等与冲床节拍相同的动作来完成送料,另设一套独立驱动可移式输送机,通过隔料机构将工件输送至预定位置,这样一套机构的配置仅局限于日本设备,不能应用于国产冲床。国内有的送料机构由冲床工作台通过连杆弹簧驱动滑块在滑道上水平滑动,将斜道上下来的料,通过隔料机构推到模具中心,并联动打板将冲好的料拨掉,往复运动的一整套机构比较简单,无输送机构,联动可靠,制造容易。但机械手不能将料提升、夹紧,料道倾斜放置靠料自重滑下,如规格重量变动,则料道上工件下滑速度不一致,易产生叠料,推料机构没有将料夹紧,定位不正,废品率较高,使用也不安全。结合国产冲床工作特点,采用机械手与输送机构配合为主要装置,再配合采用自动卸料安全保护,设计了具有较大应用价值和推广意义的自动送料机。2)气动送料机的原理 自动送料机主要适用于物料的自动分配和传送,其基本功能可以完成准确的送料时间,达到精确的送料位置。研制的自动送料机由两个基本应用模块组成:物料分离模块及传送模块。物料分离模块由两个双作用气缸组成,分别实现物料的分离功能和定位夹紧功能。物料分离模块将物料从料仓中分离出来,通过分离气缸将位于料仓底部的物料从料仓中推出,料仓中的物料由于白重下落至料仓底部。定位夹紧气缸在物料推出后伸出将物料定位并夹紧。两气缸的行程位置通过磁电式接近开关检测。传送模块由一个旋转气缸和真空吸盘组成。它实现了气动搬运装置功能,实质上是一个个小型的机械手。真空吸盘将物料吸取,旋转气缸实现0180。的旋转,将物料传送至下一个工位。真空吸盘通过真空压力开关检测物料是否吸住,旋转气缸通过两个微动开关实现位置检测。3)气动系统的设计 自动送料机的气动控制系统的原理图如图1.1所示。在气动系统原理图中,安装在分离气缸和定位夹紧气缸上方的元件x0、x1、x2、x3均为磁电式接近开关;安装旋转气缸两侧的元件X4、x5为微动行程开关;安装在真空系统回路中检测系统真空度(负压)的元件X6为真空开关。这些传感元件分别用于检测气缸的行程位置及吸盘工作情况。图1.1 气动控制系统原理图自动送料机的启动条件:料仓中有物料存在(通过对射式光电传感器检测)。气动系统的初始位置是:分离气缸位于伸出位置X1,定位夹紧气缸位于回缩位置X2,旋转气缸位于左侧料仓位置X4,真空发生器关闭(真空开关X6无信号) 。首先,打开气路开关01阀,压缩空气网络中的气压源经过滤调压组件02向系统供气,调节调压阀,将系统压力调整在04MPa左右,再锁定调压阀。其次,将系统上电,紧急停止阀03的电磁线圈Y0得电并自锁,阀导通,压缩空气分别向各控制回路供气。其工作过程为:(1)控N31阀的电磁线圈Y3得电,旋转气缸从料仓位置右摆180度,Y3断电;(2)控制11阀电磁线圈Y1得电,分离气缸回缩将物料从料仓中推出;(3)控制21阀电磁线圈Y2得电并自锁,定位夹紧气缸伸出将工件定位夹紧;(4)控制32阀电磁线圈Y4得电,旋转气缸左摆180。回至料仓位置,Y4断电;(5)控制41阀电磁线圈Y5得电,真空发生器产生吸力,并吸住物料(x6真空开关产生信号),Y5断电;(6)控制21阀电磁线圈Y2断电,定位夹紧气缸在弹簧作用下自行复位, 同时Y1失电分离气缸伸出复位;(7)重复步骤(1);(8)控制41阀Y6得电,真空发生器关闭,物料由于自重下落至下一个工位,Y6断电;(9)重复步骤(4)(回复到初始位置)。整个气动控制系统回复到初始位置,准备下一次的工作循环。气动系统结构如图1.2所示。该系统设有急停开关,当系统遇到紧急情况时,可按下急停开关,急停阀03的电磁线圈Y0断电,从而切断整个气动系统的压缩空气能源供给。图1.2 气动系统结构图气动系统的旋转气缸动作回路中,采用了2个气控单向阀及2个2位3通的单控电磁阀来代替1个3位5通中位0型的双控电磁阀。其实现的功能是:2个气控单向阀的密闭锁紧性能更好,通过2个气控单向阀可以更准确地将旋转气缸定位在0180。旋转角度中的任一位置,且定位更准确可靠。整个气动系统执行元件的速度控制,可调节各单向节流阀来实现。系统中的单向节流阀均采用排气节流安装方式,以保证气缸运行的平稳性。为保证真空系统的气流通畅,以提高真空发生器的真空度,回路4中的真空控制回路不安装节流阀。同时,回路4中的所有连接气管应尽可能的短, 以减小空气流通阻力,提高真空度。1.3.2 利用机械手自动送料 1)该送料机的工作原理和结构特点 机械手是以小车形式通过钢绳同滑块联接起来, 由冲床滑块上升运动牵引小车作前进的水平运动完成送料,由通过钢绳连接的重物使小车作复位运动。机械手的提升、下降是靠安装在小车顶架板上的提升缸推动滑板作往复上下运动来完成;机械手的夹紧、放松是靠安装在滑板上的夹紧缸带动连杆铰链机构来完成机械手的运动程序如下:夹紧一提升一前进至中心一下降一放松一返回节拍是恒定的, 且每一循环均需在3秒钟内完成。供油装置主要给夹紧缸、提升缸提供高压油,由齿轮泵产生高压油 或者用气压驱动卸料机构是通过安装在模具边的鸭嘴管口瞬间高压气吹卸,使冲好的工件离开模具,通过料道进人料斗。安全保护机构由两部分组成:1 滑块上安装一玻璃罩, 防止工件飞出,伤害工人。2安装两只行程开关,一只在小车前,一只装在滑块边, 当小车没有及时退回时, 两只开关断开, 使滑块不再下滑,小车免受损坏。支承脚主要用来调整整机高度,使输送带的水平高度与模具高度相适应;同时也加宽了支承面,提高了稳定性。罩壳主要是防止灰尘侵人,保护安全,防止重物与电机、减速器相碰及美化外观而设计。液压原理如图1.3所示。图1.3 液压原理图电气原理如图1.4所示。图中XK ,XK2为非自动复位式行程开关, 安装在工字钢旁边, 由小车运动来拨动。XK3 XK4为按钮式行程开关,分别安装在夹紧缸夹紧点和松开点E。XK5、XK6为按钮式行程开关,分别安装在提升缸的上顶点和下底点上。1DT,2D3DT4DT为电磁阀。Dl为输送电机,D2为液压泵电机。图1.4 电气原理图动作程序如下:闸刀HK闭合,三相动力线接通。按QA按钮,接触器C通电闭合,辅助触点自锁,、电机起动运转。用、防止过载,熔断丝1RD,2RD、3RD防止大电流通过。机械手动作控制过程:当小车后退时, 接触、1DT得电,机械手夹紧, 触到;得电,1DT失电, 夹紧停止; 同时3DT得电,机械手提升到位触及,3DT失电,提升停止, 液压自动锁紧。此时小车已前进到处, 触,复位。小车继续前进,触,4DT得电,机械手下降到位触及,4DT失电, 下降停止, 同时2DT得电,机械手放松(把工件放在模具中心)触,2DT失电,放松停止,小车后退触XK2,复位,小车继续后退,再次触XK1 如此循环来完成送料。2)主要机构的设计1挡料机构 为了使料能停留在输送带上某一特定位置,采用活动挡板,即设计两块由扭簧作用挡料的挡料板。这机构在输送带运动下,料不能撞开挡板,但在小车推力作用下、又会打开,使料能向前运动,甚至可以不提升,而直接送至模具中心。这机构的设计要点主要是扭簧设计 为了挡住料,不使料冲开挡板,扭簧的初始扭矩应不小于M,扭簧产生的扭角为。2隔料机构 主要由隔料销、拨叉、导块等组成,如图1.5。只要隔料销伸到中心就能起到很好的隔料作用设计中需确定拨叉转角及检验隔料销跟导块是否自锁,隔料机构可根据工件直径调整。图1.5 隔料机构图3)输送机构输送带速度由节拍时间和捎料机构到隔料机构阐的距离决定。如速度变换,用改变带轮直径来达到。输送带用薄形高强度夹布输送胶布制造,运动平稳,使用可靠。料道根据料的直径调节。4)卸料机构一个鸭嘴高压气管安装在上下模分模面两边,进行瞬时吹气卸料。此动作是由一个行程开关和一只一位二通电磁阀来完成的 当冲床滑块上升至行程时,碰触行程开关, 电磁阀动作,做瞬间吹气,使工件离开模具,通过料道落在料斗中。5)安全保护机构(1)通过落在料斗中的工件产生的振动,发出信号由传感器继电联锁使冲床连续工作,如果工件未进入料斗, 冲床就停留在上死点,这样可避免工件粘在上模而产生危险事故。(2)在小车处于最前处装一行程开关,在滑块上死点略低处又装一只行程开关。当滑块下滑时,小车因运动部件发生故障,仍没有离开危险区域,则两只行程开关同时动作,则切断离合器,同时曲轴柄上的刹车动作,使滑块不再下滑,直至排除故障,重新起动时才下滑。(3)在冲床滑块上安装有机玻璃罩,随同滑块下降,可以防止冲压零件飞出伤人。第二章 机械传动方案的确定2.1 课题设计方案设计方案: 1.采用分离气缸和定位夹紧气缸实现物料的运送和分离 2.利用机械手进行送料 3.采用伺服电机控制工作台进行送料方案一:采用双作用缸实现物料的分离功能和定位夹紧功能气动送料机由两个基本应用模块组成:物料分离模块及传送模块。物料分离模块由两个双作用气缸组成,分别实现物料的分离功能和定位夹紧功能。为保证真空系统的气流通畅,以提高真空发生器的真空度,回路4中的真空控制回路不安装节流阀。同时,回路4中的所有连接气管应尽可能的短, 以减小空气流通阻力,提高真空度。采用气缸的优点:减少了物料的运送步骤,缩短了加工时间,操作简单。缺点:对物料的放置有很高的精度要求,造价高昂,一般的小型企业不采用方案二:利用机械手进行送料机械手是以小车形式通过钢绳同滑块联接起来, 由冲床滑块上升运动牵引小车作前进的水平运动完成送料,由通过钢绳连接的重物使小车作复位运动。由小车机械手将工件送至冲床下进行冲孔,提高了生产效率,保证了质量,改善了劳动强度,确保了人生安全。采用机械手送料的优点:送料与冲床节拍相同,可以连续生产。缺点:首先由于整个过程均由机械手实现,所以对机械手的要求度很高,其次,如果工件大小不一要经常更换。方案三:采用电机控制工作台进行送料由单片机产生驱动脉冲信号,步进电机的驱动器收到驱动脉冲信号后,步进电机将会按照设定的方向转动一个固定的角度,将电脉冲转化成交位移。电机的转速由脉冲信号频率来控制决定,再由电机控制工作台进行送料冲压。优点:1、可以连续生产,并且能实现一人控制几台机器2、可靠性高,由于送料机构外部由步进电机控制,所以每次的行程都是固定值。3、低功耗,低电压。在许多没有电力供应的应用场合,较低的功耗和工作电压是生产便捷化的必要条件。4、维护方便,经济实用。综合以上的比较,选择方案三来设计护栏冲压机构。2.2 系统的机构示意图护栏框架加工冲床机械结构如图2.1所示,它包括了2个工作台面,左边的工作台面是固定的,右边的工作台面是可移动的,2个台面上都有夹具,为了保证工件在送料过程中不会被夹具磨损,所以左边的工作台面上的夹具采用内嵌弹簧的方法。图2.1 机构简图2.3 传动装置总体设计方案:1. 组成:传动装置由电机、减速器、工作机组成。2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。3. 确定传动方案:考虑到电机转速高,传动功率大,将电机设置在高速级。 其传动方案如下:图2.2 (传动装置总体设计图)初步确定传动系统总体方案如:传动装置总体设计图所示。选择二级圆柱斜齿轮减速器。传动装置的总效率为联轴器的传动效率, 为轴承的效率,为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)为联轴器的效率, 因是薄壁防护罩,采用开式效率计算。取=0.96 =0.98 =0.95 =0.99 =0.960.960.990.824;2.4 电动机的选择电动机所需工作功率为: PP/32001.4/10000.8243.40kW经查表按推荐的传动比合理范围,二级圆柱斜齿轮减速器传动比i840,则总传动比合理范围为i16160,电动机转速的可选范围为nin(16160)66.881070.0810700.8r/min。综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,选定型号为Y112M4的三相异步电动机,额定功率为4.0额定电流8.8A,满载转速1440 r/min,同步转速1500r/min。方案电动机型 号额定功 率Pkw电动机转速电动机重量N参考价格元传动装置的传动比同步转速满载转速总传动比减速器1Y112M-4415001440470230125.6535.902.5 确定传动装置的总传动比和分配传动比(1)总传动比由选定的电动机满载转速n和工作机主动轴转速n,可得传动装置总传动比为n/n1440/84.3817.05(2)分配传动装置传动比式中分别为电机和减速器的传动比。初步取1,减速器传动比为17.05/1=17.05根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为3.24,则5.262.6计算传动装置的运动和动力参数(1)各轴转速 1440/11440 r/min1440/3.24444.4 r/min/444.4/5.26=84.38 r/min(2)各轴输入功率3.400.963.26kW23.260.980.953.04kW23.040.980.952.83kW则各轴的输出功率:0.98=3.260.98=3.19 kW0.98=3.040.98=2.98 kW0.98=2.830.98=2.77kW(3) 各轴输入转矩 = Nm电动机轴的输出转矩=9550 =95503.40/1440=22.55 Nm所以: =22.5510.96=21.65 Nm=21.653.240.960.98=65.98 Nm=65.985.260.980.95=333.65 Nm输出转矩:0.98=21.650.98=21.21 Nm0.98=65.980.98=64.66 Nm0.98=333.650.98=326.98 Nm运动和动力参数结果如下表轴名功率P KW转矩T Nm转速r/min输入输出输入输出电动机轴3.4022.5514401轴3.263.1921.6521.2114402轴3.042.9865.9864.66444.43轴2.832.77333.65326.9884.38第三章 齿轮的设计和计算3.1 高速级齿轮传动的设计计算 齿轮材料,热处理及精度考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮(1)齿轮材料及热处理 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数=24高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z=Z=3.2424=77.76 取Z=78. 齿轮精度按GB/T100951998,选择7级,齿根喷丸强化。初步设计齿轮传动的主要尺寸按齿面接触强度设计确定各参数的值:试选=1.6查课本图10-30 选取区域系数 Z=2.433 由课本图10-26 则由课本公式10-13计算应力值环数N=60nj =60626.091(283008)=1.442510hN= =4.4510h #(3.25为齿数比,即3.25=)查课本 10-19图得:K=0.93 K=0.96齿轮的疲劳强度极限取失效概率为1%,安全系数S=1,应用公式10-12得:=0.93550=511.5 =0.96450=432 许用接触应力 查课本由表10-6得: =189.8MP 由表10-7得: =1T=95.510=95.5103.19/626.09=4.8610N.m3.设计计算小齿轮的分度圆直径d=计算圆周速度计算齿宽b和模数计算齿宽b b=49.53mm计算摸数m 初选螺旋角=14=计算齿宽与高之比齿高h=2.25 =2.252.00=4.50 = =11.01计算纵向重合度=0.318=1.903计算载荷系数K使用系数=1根据,7级精度, 查课本由表10-8得动载系数K=1.07,查课本由表10-4得K的计算公式:K= +0.2310b =1.12+0.18(1+0.61) 1+0.231049.53=1.42查课本由表10-13得: K=1.35查课本由表10-3 得: K=1.2故载荷系数:KK K K K =11.071.21.42=1.82按实际载荷系数校正所算得的分度圆直径d=d=49.53=51.73计算模数=4. 齿根弯曲疲劳强度设计由弯曲强度的设计公式 确定公式内各计算数值 小齿轮传递的转矩48.6kNm 确定齿数z因为是硬齿面,故取z24,zi z3.242477.76传动比误差 iuz/ z78/243.25i0.0325,允许计算当量齿数zz/cos24/ cos1426.27 zz/cos78/ cos1485.43 初选齿宽系数 按对称布置,由表查得1 初选螺旋角 初定螺旋角 14 载荷系数KKK K K K=11.071.21.351.73 查取齿形系数Y和应力校正系数Y查课本由表10-5得:齿形系数Y2.592 Y2.211 应力校正系数Y1.596 Y1.774 重合度系数Y端面重合度近似为1.88-3.2()1.883.2(1/241/78)cos141.655arctg(tg/cos)arctg(tg20/cos14)20.6469014.07609因为/cos,则重合度系数为Y0.25+0.75 cos/0.673 螺旋角系数Y轴向重合度 1.825,Y10.78 计算大小齿轮的 安全系数由表查得S1.25工作寿命两班制,8年,每年工作300天小齿轮应力循环次数N160nkt60271.4718300286.25510大齿轮应力循环次数N2N1/u6.25510/3.241.930510查课本由表10-20c得到弯曲疲劳强度极限小齿轮 大齿轮查课本由表10-18得弯曲疲劳寿命系数:K=0.86 K=0.93 取弯曲疲劳安全系数 S=1.4= 大齿轮的数值大.选用. 设计计算 计算模数对比计算结果,由齿面接触疲劳强度计算的法面模数m大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m=2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d=51.73来计算应有的齿数.于是由:z=25.097 取z=25那么z=3.2425=81 几何尺寸计算计算中心距 a=109.25将中心距圆整为110按圆整后的中心距修正螺旋角=arccos因值改变不多,故参数,等不必修正.计算大.小齿轮的分度圆直径d=51.53d=166.97计算齿轮宽度B=圆整的 3.2 低速级齿轮传动的设计计算 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数=30速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBS z=2.3330=69.9 圆整取z=70. 齿轮精度按GB/T100951998,选择7级,齿根喷丸强化。 按齿面接触强度设计1. 确定公式内的各计算数值试选K=1.6查课本由图10-30选取区域系数Z=2.45试选,查课本由图10-26查得=0.83 =0.88 =0.83+0.88=1.71应力循环次数N=60njL=60193.241(283008)=4.4510 N=1.9110由课本图10-19查得接触疲劳寿命系数K=0.94 K= 0.97 查课本由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限取失效概率为1%,安全系数S=1,则接触疲劳许用应力=0.98550/1=517540.5查课本由表10-6查材料的弹性影响系数Z=189.8MP选取齿宽系数 T=95.510=95.5102.90/193.24=14.3310N.m =65.712. 计算圆周速度 0.6653. 计算齿宽b=d=165.71=65.714. 计算齿宽与齿高之比 模数 m= 齿高 h=2.25m=2.252.142=5.4621 =65.71/5.4621=12.035. 计算纵向重合度6. 计算载荷系数KK=1.12+0.18(1+0.6+0.2310b =1.12+0.18(1+0.6)+ 0.231065.71=1.4231使用系数K=1 同高速齿轮的设计,查表选取各数值=1.04 K=1.35 K=K=1.2故载荷系数K=11.041.21.4231=1.7767. 按实际载荷系数校正所算的分度圆直径d=d=65.71计算模数3. 按齿根弯曲强度设计m确定公式内各计算数值(1) 计算小齿轮传递的转矩143.3kNm(2) 确定齿数z因为是硬齿面,故取z30,zi z2.333069.9传动比误差 iuz/ z69.9/302.33i0.0325,允许(3) 初选齿宽系数 按对称布置,由表查得1(4)初选螺旋角 初定螺旋角12(5)载荷系数KKK K K K=11.041.21.351.6848(6)当量齿数 zz/cos30/ cos1232.056 zz/cos70/ cos1274.797由课本表10-5查得齿形系数Y和应力修正系数Y (7) 螺旋角系数Y轴向重合度 2.03Y10.797(8) 计算大小齿轮的 查课本由图10-20c得齿轮弯曲疲劳强度极限 查课本由图10-18得弯曲疲劳寿命系数K=0.90 K=0.93 S=1.4= 计算大小齿轮的,并加以比较 大齿轮的数值大,选用大齿轮的尺寸设计计算. 计算模数对比计算结果,由齿面接触疲劳强度计算的法面模数m大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m=3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d=72.91来计算应有的齿数.z=27.77 取z=30z=2.3330=69.9 取z=70 初算主要尺寸计算中心距 a=102.234将中心距圆整为103 修正螺旋角=arccos因值改变不多,故参数,等不必修正 分度圆直径 d=61.34d=143.12 计算齿轮宽度圆整后取 图3.1 低速级大齿轮3.3齿轮各设计参数附表1. 各轴转速n(r/min)(r/min)(r/min)(r/min)626.09193.2484.3884.382. 各轴输入功率 P(kw)(kw)(kw)(kw)3.26 3.042.832.753. 各轴输入转矩 T(kNm)(kNm)(kNm) (kNm)49.79151.77326.98307.52第四章 传动轴承和传动轴的设计4.1传动轴承的设计. 求输出轴上的功率P,转速,转矩P=2.83KW =84.38r/min=326.98Nm. 求作用在齿轮上的力已知低速级大齿轮的分度圆直径为 =143.21 而 F= F= F F= Ftan=4348.160.246734=1072.84N圆周力F,径向力F及轴向力F的方向如图示:. 初步确定轴的最小直径先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本取输出轴的最小直径显然是安装联轴器处的直径,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号查课本,选取因为计算转矩小于联轴器公称转矩,所以查机械设计手册选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径. 根据轴向定位的要求确定轴的各段直径和长度 为了满足半联轴器的要求的轴向定位要求,-轴段右端需要制出一轴肩,故取-的直径;左端用轴端挡圈定位,按轴端直径取挡圈直径半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故-的长度应比 略短一些,现取 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.DB轴承代号 45851958.873.27209AC 45851960.570.27209B 451002566.080.07309B 50 80 16 59.270.97010C 50 80 16 59.270.97010AC 50 90 20 62.477.77210C 图4.1 单列角接触球轴承4.2 从动轴的设计 对于选取的单向角接触球轴承其尺寸为的,故;而 .右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度mm, 取安装齿轮处的轴段;齿轮的右端与左轴承之间采用套筒定位.已知齿轮的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取. 齿轮的左端采用轴肩定位,轴肩高3.5,取.轴环宽度,取b=8mm. 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取. 取齿轮距箱体内壁之距离a=16,两圆柱齿轮间的距离c=20.考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8,已知滚动轴承宽度T=16,高速齿轮轮毂长L=50,则至此,已初步确定了轴的各端直径和长度.5. 求轴上的载荷 首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,查机械设计手册20-149表20.6-7.对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距. 传动轴总体设计结构图:图4.2 从动轴图4.3 中间轴图4.4 主动轴从动轴的载荷分析图:图4.5 从动轴的载荷分析图6. 按弯曲扭转合成应力校核轴的强度根据=前已选轴材料为45钢,调质处理。查表15-1得=60MP 此轴合理安全7. 精确校核轴的疲劳强度. 判断危险截面截面A,B只受扭矩作用。所以A B无需校核.从应力集中对轴的疲劳强度的影响来看,截面和处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面的应力集中的影响和截面的相近,但是截面不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面和显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面左右两侧需验证即可. 截面左侧。抗弯系数 W=0.1=0.1=12500抗扭系数 =0.2=0.2=25000截面的右侧的弯矩M为 截面上的扭矩为 =311.35截面上的弯曲应力截面上的扭转应力 =轴的材料为45钢。调质处理。由课本表15-1查得: 因 经插入后得2.0 =1.31轴性系数为 =0.85K=1+=1.82K=1+(-1)=1.26所以 综合系数为: K=2.8K=1.62碳钢的特性系数 取0.1 取0.05安全系数S=25.13S13.71S=1.5 所以它是安全的截面右侧抗弯系数 W=0.1=0.1=12500抗扭系数 =0.2=0.2=25000截面左侧的弯矩M为 M=133560截面上的扭矩为 =295截面上的弯曲应力 截面上的扭转应力 =K=K=所以 综合系数为:K=2.8 K=1.62碳钢的特性系数 取0.1 取0.05安全系数S=25.13S13.71S=1.5 所以它是安全的4.3 键的设计和计算选择键联接的类型和尺寸一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.根据 d=55 d=65查表6-1取: 键宽 b=16 h=10 =36 b=20 h=12 =50校和键联接的强度 查表6-2得 =110MP工作长度 36-16=2050-20=30键与轮毂键槽的接触高度 K=0.5 h=5K=0.5 h=6由式(6-1)得: 两者都合适取键标记为: 键2:1636 A GB/T1096-1979键3:2050 A GB/T1096-1979第五章 丝杠的设计和校核计算5.1滚珠丝杠的特点(1) 摩擦损失小,传动效率高,可达0.90.96;(2) 丝杠螺母之间预紧后,可以完全消除间隙,提高了传动刚度;(3) 摩擦阻力小,几乎与运动速度无关,动静摩擦力之差极小,能保证运动平稳,不易产生低速爬行现象。磨损小、寿命长、精度保持性好;(4) 不能自锁。有可逆性,即能将旋转运动转换为直线运动,或将直线运动转动为旋转运动。因此丝杠立式使用时,应增加制动装置。5.2滚珠丝杠的计算根据滚珠丝杠的选型计算来求本设计滚珠丝杠的选择。最大行程: S=2700mm快速移动速度 :V=0.5m/s加/减速时间常数: t=0.15s定位精度: mm希望寿命30000(小时)直线导轨摩擦系数:0.1最大转速: N=3000r/min5.2.1导程L 其中 为快速移动速度, 为最大转速,代入数据计算得=0.560/3000=10mm5.2.2螺母计算(1)加速时 加速度 轴向负载 (2)固定速度时 轴向负载 (3)减速时 轴向负载 其中 为工作台质量, 为加减速时间常数, 为直线导轨摩擦系数,将以上数据分别代入式,得 =3.3(m/s)Pa=1003.3+0.0210010=350(N) Pb=0.0210010=20(N) Pc=1003.30.0210010=310(N)利用负载条件计算轴向平均负载和平均转速,有 其中 s 将以上数据分别代入得 Pm=()/ (15000.15+30000.7+15000.15) =366.6(N) Nm=(15000.15+30000.7+15000.15)/(0.15+0.7+0.15) =1500r/min净工作时间不包括停止时间,小时所以有: 其中为负载因子,在无冲击平滑运转时,取 普通状态下的运转时,取 有冲击和振动情况下的运转时,取因此取,代入式,计算得: C=(60300001500)/ =2639.52(N)根据以上计算结果,选择南京工艺装备公司生产的FFB型内循环单螺母变位导程预紧滚珠丝杠螺母副,型号为FFB25062其公称直径=25mm基本导程 =10mm螺纹底径 =20.9mm丝杠外径 =23.9mm刚球直径 Dw=4mm循环圈数 2螺纹长度:2649mm滚珠丝杠螺母副的安装方式采用一端固定、一端游动支撑方式:固定端轴承型号:2列组合60 接触角推力角接触球轴承(背靠背组配), 760204TNI,即内径d=20mm,外径D=47mm宽度B=14mm;游动端轴承型号:两个深沟球轴承组配,6204,即内径d=20mm,外径D=47mm宽度B=14mm。 5.3丝杠的校核计算5.3.1滚珠丝杠的寿命计算 滚珠丝杠的寿命即一组滚珠在相同的状况下运动,不致引起螺纹槽或滚珠疲劳失效时的时间长短。螺纹槽或滚珠的断裂是由于持续的压力引起金属疲劳而导致的。滚珠丝杠的寿命是由基本动额定负载决定的。丝杠的寿命可以通过以下公式计算:(h) 其中 、前面均有计算结果,将其代入计算得=/(601500) 2639.52/(366.51.5) =29897(h)5.3.2 丝杠的临界转速计算 滚珠丝杠的最高转速是指快速移动时的转速。因此,只要此时的转速不超过临界转速就可以。从自振频率角度来校核临界转速,计算公式如下:其中 为重力加速度,取 为丝杠材料的密度,由于丝杠时钢,故取钢的密度为 A为丝杠底径的横截面积 E为丝杠材料的弹性模量,I为丝杠底径的惯性矩 为支承间的距离,取决于丝杠安装形式的系数,将上述数据代入,计算得: =(60)/(23.14)(2.110510)/(164.370) =543(r/min)第六章 联轴器的选择联轴器是用来联接轴与轴,以传递运动和转距。有时也可作为一种安全装置用来防止被联接件承受过大的载荷,起到过载保护的作用。用联轴器联接两轴时,只有在机器停止运转后才能使两轴分离。6.1联轴器的转矩计算根据计算转矩来选择联轴器的型号。式中:T理论转矩(Nm); Tn许用转矩(Nm); Pw驱动功率(kW); PH驱动功率(马力); n工作转速(r/min); K工作情况系数。2.载荷计算.公称转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论