




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . .数列知识点总结 1. 等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)。的最值可求二次函数的最值;或者求出中的正、负分界项,(即:当,解不等式组可得达到最大值时的值;当,由可得达到最小值时的值. )(6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有, ,.2. 等比数列的定义与性质定义:(为常数,),.等比中项:成等比数列,或.前项和:性质:是等比数列(1)若,则(2)仍为等比数列,公比为.3求数列通项公式的常用方法 由求。( )例1:数列,求解 时, 时, 得:,练习数列满足,求注意到,代入上式整理得,又,是等比数列,故。时,由递推公式求(1)累加法()例2:数列中,求解: 累加得 (2)累乘法()例3:数列中,求解: ,又,.(3)构造新数列(构造的新数列必为等比数列或等差数列)取倒构造(等于关于的分式表达)例4:,求解:由已知得:,为等差数列,公差为, 同除构造 例5:。 解:对上式两边同除以,得,则为等差数列,公差为,。 例6:,求。 解:对上式两边同除以,得,令,则有,累加法可得,则,即。 例7:。解:对上式两边同除以,得,即,则为等差数列,公差为2,。 取对构造(涉及的平方) 例8: 解:对上式两边取对数,得,由对数运算性质得两边同时加,整理得则为公比为2的等比数列,由此推知通项公式。等比型(常用待定系数)例9:。解:待定系数法设上式可化为如下形式:,整理可知,则,原式可化为,则为公比=3的等比数列,由此推知通项公式。例10:,求。解:待定系数法设上式可化为如下形式:,整理可知,得,原式可化为,则为公比=4的等比数列,由此推知通项公式。 提公因式 例11:。解:上式变形为,等号左边提公因式得,两边取倒数得,为公差为1的等差数列,由此推知通项公式。例12:,求。解:上式变形为,令,则,;由累加法可求得通项公式。4. 求数列前n项和的常用方法 (1)分组求和(分组后用公式) 例13:求和。 解:原式= =(2)裂项相消(把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. )常用:;。(3)错位相减(通项可表示为等差乘等比的形式)例14:求。 解: 时,时,练习 求数列。(答案:)(4)倒序相加(前后项之和为定值。把数列的各项顺序倒写,再与原来顺序的数列相加. )相加5. 求数列绝对值的前n项和(根据项的正负,分类讨论) 例15:已知数列的通项,求的前项和。 解:设数列的前项和为, 时, 时, 。 1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4. 岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献给她的是一些色彩,它奉献给你的也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年地面瞄准设备、定位定向设备项目合作计划书
- 2025闵行七宝镇村(合作社)、镇属公司公开招聘20人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年吉林松原经济技术开发区管理委员会公开招聘事业单位工作人员(含专项招聘高校毕业生)(5人)考前自测高频考点模拟试题及答案详解(典优)
- 2025年浙江大学医学院附属儿童医院招聘眼科劳务派遣特检1人考前自测高频考点模拟试题及完整答案详解一套
- 2025贵州毕节市人民政府办公室下属事业单位考调5人考前自测高频考点模拟试题及1套参考答案详解
- 2025广东韶关市翁源县人民法院招聘劳动合同制书记员1人模拟试卷含答案详解
- 2025南昌动物园百花园管理所招聘3人模拟试卷及答案详解(名师系列)
- 2025第十师北屯市高层次和急需紧缺人才引才(20人)模拟试卷及1套完整答案详解
- 2025贵州铜仁市妇幼保健院引进专业技术人才考前自测高频考点模拟试题及答案详解(有一套)
- 出单员个人工作总结
- 工程围墙销售方案(3篇)
- 危急值报告管理课件
- JG/T 9-1999钢椼架检验及验收标准
- 外贸公司简介课件
- 2023产品质量监督抽查工作规范
- 法务合同协议模板下载
- 子宫内膜异位症长期管理
- 数控脉宽脉冲信号发生器
- 高考文言文120个常见实词积累练习(学生版)
- 《实战电池性能测试》课件
- 2025年全国共青团团员知识竞赛题库及答案(共150题)
评论
0/150
提交评论