最新课程设计_ 免费下载.doc_第1页
最新课程设计_ 免费下载.doc_第2页
最新课程设计_ 免费下载.doc_第3页
最新课程设计_ 免费下载.doc_第4页
最新课程设计_ 免费下载.doc_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

伺服电机PLC控制系统设计1 设计的目的及意义随着柔性制造技术、计算机集成制造技术和信息技术的发展,当今世界制造业即将进入全盘自动化的时代,自动化制造系统的实施标志着人类进入了现代文明生产的新纪元。交流伺服系统因响应速度快、速度精度高、调速范围宽、加减速性能好等特点,在制造业控制中得到了广泛的应用,逐渐成为工业自动化领域中运动控制的主流。随着自动化水平的不断提高,越来越多的工业控制场合需要精确的位置控制。因此,如何更方便、更准确地实现位置控制是工业控制领域内的一个重要问题。位置控制的精确性主要取决于伺服驱动器和运动控制器的精度。高端的运动控制模块可以对伺服系统进行非常复杂的运动控制。但在有些需要位置控制的场合,其对位置精度的要求比较高,但运动的复杂程度不是很高,这就没有必要选择那些昂贵的高端运动控制。通过本课程设计的训练,使学生在机床数控技术、机床电气控制、单片机原理与接口技术等相关课程知识的基础上,能够运用所学独立完成伺服进给系统的自动控制系统设计,从而使学生进一步加深和巩固对所学知识的理解和掌握,并提高学生的实际操作能力。1运用所学的知识,进行数控系统设计的初步训练,培养学生的综合设计能力; 2掌握交流伺服电动机的原理和控制方法;3掌握伺服驱动器的基本工作原理及使用控制方法;3掌握PLC控制系统设计的基本技能,具备查阅和运用标准、手册、图册等有关技术资料的能力;4基本掌握编写技术文件的能力。可编程控制器简称PLC是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术发展而来的一种新型工业控制装置。它具有结构简单、编程方便、可靠性高等优点,已广泛用于工业过程和位置的自动控制中。据统计,可编程控制器是工业自动化装置中应用最多的一种设备。专家认为,可编程控制器将成为今后工业控制的主要手段和重要的基础设备之一,PLC、机器人、CAD/CAM将成为工业生产的三大支柱。PLC是在继电器控制逻辑基础上,与3C(Computer,Control,Communication)技术相结合,不断发展完善的。目前已从小规模单机顺序控制,发展到包括过程控制、位置控制等场合的所有控制领域。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是分散安装在生产现场的各单机设备上,虽然它们大多处在强电电路和强电设备所形成的恶劣电磁环境中,但PLC是专门为工业生产环境而设计的控制装置,在设计和制造过程中采用了多层次抗干扰和精选元件措施,故具有较强的适应恶劣工业环境的能力、运行稳定性和较高的可靠性,因此一般不需要采取什么特殊措施就可以直接在工业环境使用。2.控制系统硬件设计2.1 伺服电动机的选择 (1)根据某机床进给电机采用交流伺服电动机,型号为ASD-B2-1521-B,丝杠螺距6mm。试参考下表1选择对应的伺服电机。表1 伺服驱动器与电机机种名称对应参照表上表以伺服电机的额定电流的三倍来设计伺服驱动器的规格。如果使用者需要六倍于伺服电机额定电流的伺服驱动器专用机,可咨询经销商。电机及驱动器的详细规格可照第十一章规格。所选择的伺服电机为ECMA-E21315 S(S=22mm)。(2)电机的外型尺寸(3)电动机接线法伺服驱动器电源接线法分为单相与三相两种,单相仅允许用于1.5kW 与1.5kW 以下机种。图中,Power On 为a 接点,Power Off 与ALRM_RY 为b 接点。MC 为电磁接触器线圈及自保持电源,与主回路电源接点。 单相电源接线法(1.5kW(含)以下适用(4)电机U、V、W 引出线的连接头规格2.2 伺服驱动器的选择(1)伺服驱动器的基础知识 : 伺服驱动器,又称为,伺服电机驱动器 ,伺服马达驱动器 全数字交流伺服驱动器 ,Servo drive Servo motor。关于伺服的应用有很多方面,连一个小小的电磁调压阀,也可以算上一个伺服系统。其他伺服应用如火炮或雷达,用作随动,要求实时性好,动态响应快,超调小,精度在其次。如果是机床,则经常用作恒速,位置高精度,实时性要求不高。首先得确定你应用在什么场合。如果用在机床上,则控制部分硬件可以设计得相对简单一些,成本也相应低些。如果用于军工,则内部固件设计时控制算法应该更灵活,比如提供位置环滤波、速度环滤波、非线性、最优化或智能化算法。当然不需要在一个硬件部分上实现。可以面向对象做成几种类型的产品。交流伺服在加工中心、自动车床、电动注塑机、机械手、印刷机、包装机、弹簧机、三坐标测量仪、电火花加工机等等方面的设备有广阔的应用。 关于步进电机和交流伺服电机的性能有较大差别。步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。如:1、制精度不同;2、低频特性不同 3、矩频特性不同 4、过载能力不同 5、运行性能不同 6、速度响应性能不同。交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。有关伺服零点开关的问题。找零的方法有很多种,可根据所要求的精度及实际要求来选择。可以伺服电机自身完成(有些品牌伺服电机有完整的回原点功能),也可通过上位机配合伺服完成,但回原点的原理基本上常见的有以下几种。一、伺服电机寻找原点时,当碰到原点开关时,马上减速停止,以此点为原点。二、回原点时直接寻找编码器的Z相信号,当有Z相信号时,马上减速停止。这种回原方法一般只应用在旋转轴,且回原速度不高,精度也不高。同步带的安装对伺服定位也有很大影响吗。这个情况,得知道伺服是不是调得很软?常见伺服是用脉冲控制的,那么,位置环的比例增益,速度环比例增益、积分时间常数分别是多少呢?关于伺服的三种控制方式,一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。想知道的就是这三种控制方式具体根据什么来选择的?速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是:1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWMVVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。(2)驱动器的选择 伺服驱动器各部名称 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。 (3)驱动器各端口连接(4)伺服系统基本方块图(5)标准接线方式位置(Pt)模式标准接线(6)伺服驱动器外型尺寸 采用交流伺服电动机,型号为ASD-B2-1521-B B2 1kw驱动器 16万分辨率 220v 响应频宽:550hz2.3 PLC的选择与使用PLC(Programmable Logic Controller)是一种以计算机(微处理器)为核心的通用工业控制装置,专为工业环境下应用而设计的一种数字运算操作的电子学系统。目前已经广泛地应用于工业生产的各个领域。早期的可编程序控制器只能用于开关量的逻辑控制,被称为可编程序逻辑控制器(Programmable Logic Controller),简称PC。现代可编程序控制器采用微处理(Microprocessor)作为中央处理单元,其功能大大增强,它不仅具有逻辑控制功能,还具有算术运算、模拟量处理和通信联网等功能。PLC的高可靠性到目前为止没有任何一种工业控制设备可以达到,PLC对环境的要求较低,与其它装置的外部连线和电平转换极少,可直接接各种不同类型的接触器或电磁阀等。 这样看来,PC这一名称已经不能准确反映它的特性,于是,人们将其称为可编程序控制器(Programmable Controller),简称PLC。但是近年来个人计算机(Personal Computer)也简称PLC,为了避免混淆,可编程序控制器常被称为PLC。1 PLC的产生和发展在PLC出现之前,机械控制及工业生产控制是用工业继电器实现的。在一个复杂的控制系统中,可能要使用成千上百个各式各样的继电器,接线、安装的工作量很大。如果控制工艺及要求发生变化,控制柜内的元件和接线也需要作相应的改动,但是这种改造往往费用高、工期长。在一个复杂的继电器控制系统中,如果有一个继电器损坏、甚至某一个继电器的某一点接触点不良,都会导致整个系统工作不正常,由于元件多、线路复杂,查找和排除故障往往很困难。继电器控制的这些固有缺点,各日新月异的工业生产带来了不可逾越的障碍。由此,人们产生了一种寻求新型控制装置的想法。1968年,美国最大的汽车制造商通用汽车公司(GM公司)为了适应汽车型号不断翻新的要求,提出如下设想:能否把计算机功能完备、灵活、通用等优点和继电器控制系统的简单易懂、操作方便、价格便宜等优点结合起来,做成一种通用控制装置,并把计算机的编程方法合成程序输入方式加以简化,用面向过程、面向问题的“自然语言”编程,使得不熟悉计算机的人也可以方便使用。这样,使用人员不必在编程上花费大量的精力,而是集中力量去考虑如何发挥该装置的功能和作用。这一设想提出之后,美国数字设备公司(DEC公司)首先响应,于1969年研制出了世界上第一台PLC。此后,这项新技术就迅速发展起来。PLC的发展过程大致如下:第一代:从第一台可编程序控制器诞生到70年代初期。其特点是:CPU有中小型规模集成电路组成,存储器为磁芯存储器;功能简单,主要能完成条件、定时、计数控制;机种单一,没有形成系列;可靠性略高于继电接触器系统;没有成型的编程语言。第二代:70年代初期到70年代末期。其特点是:CPU采用微处理器,存储器采用EPROM,使PLC的技术得到了较大的发展:PLC具有了逻辑运算、定时、计数、数值计算、数据处理、计算机接口和模拟量控制等功能:软件上开发出自诊断程序,可靠性进一步提高;系统开始向标准化、系统化发展;结构上开始有整体式和模块式的区分,整体功能从专用向通用过渡。第三代:70年代末期到80年代中期。单片计算机的出现、半导体存储器进入了工业化生产及大规模集成电路的使用,推进了PLC的进一步发展,使其演变成专用的工业化计算机。其特点是:CPU采用8位和16位微处理器,使PLC的功能和处理速度大大增强;具有通信功能远程I/O能力;增加了多种特殊功能;自诊断功能及容错技术发展迅速;软件方面开发了面向过程的梯形图语言及其变相的语句表(也称逻辑符号);PLC的体积进一步缩小,可靠性大大提高,成本大型化、低成本。第四代:80年代中期到90年代中期。随着计算机技术的飞速发展,促进PLC完全计算机化。PLC全面使用8位、16位微处理芯片的位片式芯片,处理速度也达到1微秒/步。功能上具有高速计数、中断、A/D、D/A、PID等,已能满足过程控制的要求,同时加强了联网的能力。第五代:90年代中期至今。RISC(简称指令系统CPU)芯片在计算机行业大量使用,表面贴装技术和工艺已成熟,使PLC整机的体积大大缩小,PLC使用16位和32位的微处理器芯片。CPU芯片也向专用化发展。具有强大的数值运算、函数运算和大批量数据处理能力;已开发出各种智能化模块;以LCD微现实的人机智能接口普遍使用,高级的已发展到触摸式屏幕;除手持式编程器外,大量使用了笔记本电脑和功能强大的编程软件。目前,为了适应大中型小企业的不同需要,进一步扩大PLC在工业自动化领域的应用范围,PLC正朝着以下两个方向发展:其一:小型PLC向体积缩小、功能增强、速度加快、价格低廉的方向发展,使之能更加广泛地取代继电器控制。其二:大中型PLC向大容量、高可靠性、高速度、多功能、网络化的方向发展,使之能对大规模、复杂系统进行综合性的自动控制。总的趋势是:(1) 中央处理单元处理速度进一步加快。 (2) 控制系统将分散化。(3) 可靠性进一步提高。(4) 控制与管理功能一体化。2 PLC的构成PLC的硬件主要由CPU模块、I/O端口组成。1) 中央处理单元CPU是PLC的核心,它是运算、控制中心,将完成以下任务: (1) 接受并存储用户程序和数据。(2) 诊断工作状态。(3) 接受输入信号,送入PLC的数据寄存器保存起来。(4) 读取用户程序,进行解释和执行,完成用户程序中规定的各种操作。2) PLC中的存储器分为系统程序存储器和用户程序存储器3) I/O接口模块的作用是将工业现场装置与CPU模块连接起来,包括开关量I/O接口模块、模拟量I/O接口模块、智能I/O接口模块以及外设通讯接口模块等。3选择控制器并连接第一种:因为目前大多数PLC都是带有高速脉冲输出的一般是两个OUT口,所以,直接计算好伺服电机的转数或要走的距离,按比例发脉冲给伺服驱动器就可以了,当然还要有个方向信号控制电机顺转还是逆转,所以还需要1个控制方向的OUT端,这个口可以是个非高速口。第二种:其实定位模块比如GE的有定位模块的。他们是直接根据PLC的CPU模块传过来的运行命令数据直接转换成控制伺服的方向和脉冲,但定位模块内部接口本身就是为控制伺服用的,所以他内部还有很多可以和伺服进行数据交换的,比如伺服报警信号输出,伺服使能,伺服定位结束.而控制伺服最基本的不过2中方式:1脉冲(对应的伺服位置控制方式和转距控制方式)2、 模拟电压(对应伺服的速度控制方式,如果直接用PLC控制的话PLC很少有OUT口可以输出模拟电压的所以几乎所有的PLC直接带伺服驱动器都是位置控制)而定位模块一般可以有模拟电压方式输出,和脉冲输出控制要求 1.由台达 PLC 和台达伺服组成一个简单的定位控制演示系统。通过 PLC 发送脉冲控制伺服,实现原点回归、相对定位和绝对定位功能的演示。 2.监控画面:原点回归、相对定位、绝对定位。元件说明 ASD伺服驱动器参数必要设置当出现伺服因参数设置错乱而导致不能正常运行时,可先设置 P2-08=10(回归出厂值) ,重新上电后再按照上表进行参数设置。 下图为所选PLC控制器与驱动器的连接图(4)梯形图和程序说明程序说明 1.当伺服上电之后,如无警报信号,X3=On,此时,按下伺服启动开关,M10=On,伺服启动。 2.按下原点回归开关时,M0=On,伺服执行原点回归动作,当 DOG 信号 X2 由 OffOn 变化时,伺服以 5KHZ 的寸动速度回归原点,当 DOG 信号由 OnOff 变化时,伺服电机立即停止运转,回归原点完成。 3.按下正转 10 圈开关,M1=On,伺服电机执行相对定位动作,伺服电机正方向旋转 10 圈后停止运转。 4.按下正转 10 圈开关,M2=On,伺服电机执行相对定位动作,伺服电机反方向旋转 10 圈后停止运转。 5.按下坐标 400000 开关,M3=On,伺服电机执行绝对定位动作,到达绝对目标位置 400,000处后停止。 6.按下坐标-50000 开关,M4=On,伺服电机执行绝对定位动作,到达绝对目标位置-50,000处后停止。 7.若工作物碰触到正向极限传感器时,X0=On,Y10=On,伺服电机禁止正转,且伺服异常报警(M24=On) 。 8.若工作物碰触到反向极限传感器时,X1=On,Y11=On,伺服电机禁止正转,且伺服异常报警(M24=On) 。 9.当出现伺服异常报警后,按下伺服异常复位开关,M11=On,伺服异常报警信息解除,警报解除之后,伺服才能继续执行原点回归和定位的动作。 10.按下 PLC 脉冲暂停输出开关,M12=On,PLC 暂停输出脉冲,脉冲输出个数会保持在寄存器内,当 M12=Off 时,会在原来输出个数基础上,继续输出未完成的脉冲。 11.按下伺服紧急停止开关时,M13=On,伺服立即停止运转,当 M13=Off 时,即使定位距离尚未完成,不同于 PLC 脉冲暂停输出,伺服将不会继续跑完未完成的距离。 12.程序中使用 M1346 的目的是保证伺服完成原点回归动作时,自动控制 Y4 输出一个 20ms 的伺服脉冲计数寄存器清零信号, 使伺服面板显示的数值为0 (对应伺服P0-02参数需设置为0)。 13.程序中使用 M1029 来复位 M0M4,保证一个定位动作完成(M1029=On) ,该定位指令的执行条件变为 Off,保证下一次按下定位执行相关开关时定位动作能正确执行。 14.组件说明中作为开关及伺服状态显示的 M 装置可利用台达 DOP-A 人机界面来设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论