机械手的PLC控制.doc_第1页
机械手的PLC控制.doc_第2页
机械手的PLC控制.doc_第3页
机械手的PLC控制.doc_第4页
机械手的PLC控制.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机械手的PLC控制第一章 机械手简介第一节 概述机械手首先是由美国开始研制的。1958年美国联合控制公司研制出了第一台机械手。机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。第二节 机械手的组成机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度 。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有23个自由度。第三节 机械手的分类机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。第四节 机械手的应用机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。另外,机械手在锻造工业中的应用不仅能进一步发展锻造设备的生产能力,而且还能改善热、累等劳动条件。 第二章 机械手的控制方案与选择第一节 控制要求如下图所示为某生产车间中自动化搬运机械手,用于将左工作台上的工件搬运到右工作台上。机械手的全部动作由液压驱动。液压泵由电磁阀控制,其上升/下降、左移/右移运动由双线圈两位电磁阀控制,即上升电磁阀得电时机械手上升,下降电磁阀得电时机械手下降。夹紧/放松运动由单线圈两位电磁阀控制,线圈得电时机械手夹紧,断电时机械手放松。图2.1机械手的动作示意图为便于控制系统调试和维护,本控制系统应有手动功能和显示功能。当手动/自动转换开关置于“手动”位置时,按下相应的手动按钮,就可实现上升、下降、左移、右移、夹紧、放松的手动控制。当机械手处于原位时,将手动/自动转换开关置于“自动”位置时,进入自动工作状态,手动按钮无效。第二节 机械手的控制系统设计方案的比较在工业自动化生产中常用的控制系统有:传统的继电器接触器控制系统、PLC控制系统和微机控制系统这三种。但从使用性、经济性、可靠性出发,本设计选用了PLC。因为从上述该机械手所需完成的控制动作分析来看,本机械手是用于各种传感器在复杂的条件下工件的传输,主要动作是上升、下降、左移、右移、夹紧、放松和工序延时控制等,控制动作基本上是以简单的顺序逻辑动作为主。是属典型的继电逻辑顺序动作控制系统,这是PLC最擅长的功能,而且PLC具有体积小、重量轻、可靠性高、抗干扰能力强、编程简单、易于维护等特点,特别是替代继电器控制系统,这更是它的优势。第三章 PLC的简介第一节 PLC的产生 1968年美国通用汽车公司(GM)招标要求:软连接代替硬接线;维护方便;可靠性高于继电器控制柜;体积小于继电器控制柜;成本低于继电器控制柜;有数据通讯功能;输入115V;可在恶劣环境下工作;扩展时,原系统变更要少;用户程序存储容量可扩展到4K 。核心思想:用程序代替硬接线,输入/输出电平可与外部装置直接相联,结构易于扩展 ,这是PLC的雏形。 1969年美国DEC公司研制出世界上第一台PLC(PDP-14),并在GM公司汽车生产线上应用成功 。第二节 PLC的定义和特点 PLC的定义美国电气协会制造商协会NEMA和国际电工委员会IEC对可编程控制器分别作了定义:可编程控制器是一种专门用于工业环境的、以开关量逻辑控制为主的自动控制装置。它具有存储控制程序的存储器,能够按照控制程序,将输入的开关量(或模拟量)进行逻辑运算、定时、计数和算术运算等处理后,以开关量(或模拟量)的形式输出,控制各种类型的机械或生产过程。早期的可编程控制器,主要用于开关量逻辑控制,所以称为可编程逻辑控制器,简称PLC,后来随着计算机计术不断发展,其功能已不仅限于开关逻辑控制,所以被称之为可编程控制器PC,但这很容易和个人计算机PC相混淆,因此,一般仍把PLC作为可编程控制器的简称。 PLC的特点可编程控制器之所以能够得到迅速发展和广泛应用,主要是由于它具有以下特点:(1) 可靠性高,抗干扰能力强 用软件实现大量的开关量逻辑运算,克服了因继电器触点接触不良而造成的故障;输入采用直流低电压,更加可靠、安全;面向工业环境设计,采取了滤波、屏蔽、隔离等抗干扰措施,适应各种恶劣的工作环境,远远地超过了传统的继电器控制系统和一般的计算机控制系统。(2) 编程简单,易于掌握 PLC采用梯形图方式编写程序,与继电器控制逻辑的设计相似,具有直观、简单、容易掌握等优点。(3) 功能完善,灵活方便 随着PLC技术的不断发展,其功能更加完善,不仅具有开关量逻辑控制功能和步进、计算功能,而且还具有模拟量处理、温度控制、位置控制、网络通信等功能。既可以单机使用、也可联网运行,既可集中控制、也可分布控制或者集散控制。而且在运行过程中,可随时修改控制逻辑,增减系统的功能。(4) 体积小、质量轻、功耗低 由于采用了单片机等集成芯片,体积小、质量轻、机构经凑、功耗低。第三节 可编程控制器的主要性能指标可编程控制器的性能指标有很多,主要有以下几项指标。(1)输入/输出点数(I/O) I/O点数是指可编程控制器外部输入、输出端子数的总和。它标志着可以接多少个开关按钮和可以控制多少个负载。(2)存储容量 存储容量是指可编程控制器内部用于存放用户程序的存储容量。(3)扫描速度 一般以执行1000步指令所需的时间来衡量,单位为ms/千步,也有以执行一步指令所需来计算,单位us/步。(4)功能扩展能力 可编程控制器除了主模板块之外,通常都可配备一些可扩展模块,以适应各种特殊功能应用的需要。如A/D模块、D/A模块、位置控制模块等。(5)指令系统 指令系统是指一台可编程控制器指令的总和,它是衡量可编程控制器功能强弱的主要指标。第四节 可编程控制器的分类通常PLC产品可按结构形式、控制规模等进行分类。(1)按结构形式分类 按结构形式不同,可分为整体式和模块式两类。整体式的PLC是将电源、CPU、存储器、输入/输出单元等各个功能部件集成在一个机壳内,从而具有结构经凑、体积小、价格低等优点,许多小型PLC多采用这种机构。模块式的PLC将各个功能部件做成独立模块,如电源模块、CPU模块、I/O模块等,然后进行组合。(2)按控制规模分类 按控制规模大小,可分为小型、中型和大型PLC三种类型。 1)小型PLC。 型PLC的I/O点数在256点以下,存储容量在2K步以内,其中输入输出点数小于64点的PLC又称为超小型或微型PLC,具有逻辑运算、定时、计数、移位及自诊断、监控等基本功能。 2)中型PLC。 中型PLC的开关量I/O点数通常在2562048点之间,用户程序存储器的容量为28KB,除具有小型机的功能外,还具有较强的模拟量I/O、数字计算、过程参数调节,如比例、积分、微分(PID)调节、数据传送与比较、数制转换、中断控制、远程I/O及通信联网功能。 3)大型PLC。 大型PLC也称为高档PLC,I/O点数在2048点以上,用户程序存储容量在8K以上,其中I/O点数大于8192点的又称为超大型PLC,除具有中型机的功能外,还具有较强的数据处理、模拟调节、特殊功能函数运算、监视、记录、打印等功能,以及强大的通信联网、中断控制、智能控制和远程控制等功能。第五节 PLC系统的组成PLC是一种以微处理器为核心的工业通用自动控制装置,其硬件结构上与微型计算机控制系统相似,也是有硬件系统和软件系统两大部分组成。 PLC的硬件结构一套PLC系统在硬件上由以下几部分组成:(1) 中央处理器(CPU) 与计算机一样,是PLC的核心部件。(2) 存储器 PLC配有两种存储器:系统存储器和用户存储器。(3) 输入/输出(I/O)接口电路。(4) 电源。(5) 扩展单元。(6) 外部设备。PLC的软件 PLC的软件是指PLC所使用的各种程序的集合。它由系统程序(系统软件)和用户程序(用户软件)组成。(1) 系统程序 系统程序包括监控程序,输入译码程序及诊断程序等。(2) 用户程序 用户程序是用户根据控制要求,用PLC的编程语言(如梯形图)编制的应用程序。第六节 可编程控制器的工作方式可编程控制器在进入RUN状态之后,采用循环扫描方式工作。从第一条指令开始,在无中断或跳转控制的情况下,按程序存储的地址号递增的循序逐条执行程序,即按循序逐条执行程序直到程序结束。然后再从头开始扫描,并周而复始地重复进行。第(N-1)个扫描周期输出刷新第(N+1)个扫描周期输入采样第N个扫描周期输入采样输出刷新用户程序执行可编程控制器工作的扫描过程包括五个阶段:内部处理、通信处理、输入扫描、程序执行、输出处理。PLC完成一次扫描过程所需的时间成为扫描周期。扫描周期的长短与用户程序的长度和扫描速度有关。第七节 PLC的编程语言PLC的编程语言有梯形图语言、助记符语言、顺序功能图语言等。其中前两种语言用的较多,流程图语言也在许多场合被采用。1. 梯形图语言(1) 梯形图从上至下编写,每一行从左至右顺序编写。PLC程序执行顺序与梯形图的编写顺序一致。(2) 图左、右边垂直线称为起始母线、终止母线。每一逻辑行必须从起始母线开始画起,终止母线可以省略。(3) 梯形图中的触点有两种,即动合触点和动断触点。(4) 梯形图的最右端必须连接输出元素。(5) 梯形图中的触点可以任意串、并联,而输出线圈只能并联,不能串联。2. 助记符语言助记符语言是PLC命令的语言表达式。用梯形图编程虽然直观、简便,但要求PLC配置较大的显示器放可输入图形符号,这在有些小型机上常难以满足,所以助记符语言也是一种较常用的一种编程方式。不同型号的PLC,其助记符语言也不同,但其基本原理是相近的。编程时,一般先跟据要求编制梯形图语言,然后再根据梯形图转换成助记符语言。3. 顺序功能图语言顺序功能图SFC是一种描述顺序控制系统功能的图解表示法,主要由“步”、“转移”及“有限线段”等元素组成,它将一个完整的控制工程分为若干个阶段(状态),各阶段具有不同的动作,阶段间有一定的转换条件,条件满足就实现状态转移,上一状态动作结束,下一动作开始。第八节 PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。 1、开关量的逻辑控制 这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 2、模拟量控制 在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。 3、运动控制 PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。 4、过程控制 过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。 5、数据处理 现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。 6、通信及联网 PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。第四章 PLC对机械手的控制第一节 PLC的选型由于市场的需求和西门子PLC的广泛应用所以我选取的是S7-200.我们对其进行简要说明:S7-200系列是一类可编程逻辑控制器(Micro PLC)。这一系列产品可以满足多种多样的自动化控制需要,下图展示一台S7-200 Micro PLC的 CPU22*系列PLC的CPU外型图如图2,具有紧凑的设计、良好的扩展性、低廉的价格以及强大的指令,使得S7-200可以近乎完美地满足小规模的控制要求。此外,丰富的CPU类型和电压等级使其在解决用户的工业自动化问题时,具有很强的适应性。第二节 机械手的工艺控制过程下面设计一个简单的机械手移动工件控制系统。图a所示为一简易机械手的工艺过程。该机械手是一个水平/垂直位移的机械设备,其操作是将工件从左工作台搬运到右工作。如图是机械手的控制示意图,其过程并不复杂,一共有6个动作,分为3组,即上升/下降,左转/右转和放松/夹紧。图1 机械手控制示意图机械手的全部动作由汽缸驱动,而汽缸又由相应的电磁阀控制。其中,上升/下降和左移/右移分别由双线圈的两位电磁阀控制。例如,当下降电磁阀通电时,机械手下降,当下降电磁阀断电时,机械手下降停止。只有当上升电磁阀通电时,机械手才上升,当上升电磁阀断电时,机械手停止上升。同样,左移/右移分别由左移电磁阀和右移电磁阀控制。机械手的放松/夹紧动作由一个单线圈的两位电磁阀控制。当该线圈通电时,机械手夹紧;当该线圈断电时,机械手放松。 当机械手右移到位并准备下降时,为了确保安全,必须在右工作台上无工件时才允许机械手下降。也就是说,若上一次搬运到右工作台上的工件尚未搬走,机械手应自动停止下降,用光电开关进行有无工件的检测。机械手的动作过程图从原点开始,按下启动按钮,下降电磁阀通电,机械手下降,下降到底时,碰到下限位开关,下降电磁阀断电,下降停止。同时接通夹紧电磁阀,机械手夹紧。夹紧后,上升电磁阀通电,机械手上升,上升到顶后,碰到上限位开关,上升电磁阀断电,上升停止。同时接通右移电磁阀,机械手右移。右移到位后碰到右限位开关,右移电磁阀断电,右移停止。若此时右工作台上无工件,则光电开关接通,下降电磁阀通电,机械手下降,下降到底时碰到下限位开关,下降电磁阀断电,下降停止。同时夹紧电磁阀断电,机械手放松。放松后,上升电磁阀通电,机械手上升。上升到顶后,碰到上限位开关,上升电磁阀断电,机械手停止上升。同时接通左移电磁阀,机械手左移。左移到原点时,碰到左限位开关后,左移电磁阀断电,左移停止。至此,机械手经过8步动作完成了一个周期的工作。机械手的每次循环动作均由原位开始。机械手的操作方式分为手动操作方式和自动操作方式。自动操作方式又分为单步,单周期和连续操作。手动操作:利用按钮操作对机械手的每一步运动进行单独控制。例如,当选择上/下运动时,按下启动按钮,机械手下降;按下停止按钮,机械手上升。当选择左/右运动时,按下启动按钮,机械手夹紧;按下停止按钮,机械手放松;单步操作:每按一次启动按钮,机械手完成一步动作后自动停止。单周期操作:机械手从原点开始,按下启动按钮,机械手自动完成一个周期的动作后停止。连续操作:机械手从原点开始,按一次启动按钮,机械手的动作将自动地,连续不断地周期性循环。在工作中若按一下停止按钮,机械手将继续完成一个周期的动作后,回到原点自动停止。 第三节 PLC的接线布置图1. PLC的操作面板布置图2. I/O分配表输入点: 输出点:启动按钮 I0.0 电磁阀下降 Q0.0停止按钮 I0.6 电磁阀上升 Q0.1下限位开关 I0.1 电磁阀夹紧 Q0.2上限位开关 I0.2 电磁阀右行 Q0.3右限位开关 I0.3 电磁阀左行 Q0.4左限位开关 I0.4 原点指示 Q0.5无件检测 I0.5手动操作 I0.7单步操作 I1.0单周期操作 I1.1连续操作 I1.2手动左右 I1.3手动上下 I1.4手动夹紧 I1.53.PLC的I/O接线图该机械手控制系统所采用的PLC是德国西门子公司生产的S7-200CPU224,下图是S7-200CPU224输入/输出端子地址分配图。该机械手控制系统共使用了14个输入点,6个输出点。 4. PLC的外围端子接线图第四节 PLC控制机械手的操作程序1手动操作程序实现手动工作的梯形图程序。为避免发生误动作,插入了一些连锁电路。例如,将单操作开关扳到“左右”档时,按下启动按钮,机械手右行;按下停止按钮,机械手向左行。这两个动作只有当机械手处在上限时才能执行。将加载开关扳到“夹/松”档,按下启动按钮,执行夹紧动作;按下停止按钮,松开。将加载开关扳到“上/下”档,按下启动按钮,下降;按停止按钮,上升。2自动操作程序机械手自动操作顺序功能图。PLC由STOP转为RUN时,初始脉冲SM0.1对状态进行初始复位。当机械手在原点时,将M0.1置1,这是第一步。按下启动按钮后,置位M0.2,同时将M0.1清零,输出继电器Q0.0得电,Q0.5复位,原点指示灯熄灭,执行下降动作。当下降到底碰到下限位开关时,I0.1接通,将M0.3置1,同时将M0.2清零, Q0.2置1,于是机械手停止下降,执行夹紧动作;定时器T37开始计时,延时1.7s后,接通T37动合触点将M0.4置1,同时将M0.3清零,而输出继电器Q0.1得电,执行上升动作。由于Q0.2已经被置1,夹紧动作继续执行。当上升到上限位时,I0.2接通,将M0.5置1,同时将M0.4清零,Q0.1失电,不再上升,而Q0.3得电,执行右行动作。当右行至右限位时,I0.3接通,Q0.3失电,机械手右行停止,若此时I0.5接通,则将M0.6置1,同时将M0.4清零,而Q0.0再次得电,执行下降动作。当下降到底碰到下限位开关时,I0.1接通,将M0.7置1,同时将M0.6清零,输出继电器Q0.0复位,Q0.2复位,于是机械手停止下降,执行松开动作;定时器T38开始计时,延时1.5s后,接通T38动合触点M1.0置1,同时将M0.7清零,而输出继电器Q0.1再次得电,执行上升动作。行至上限位置,I0.2接通,将M1.1置1,同时将M1.0清零,Q0.1失电,停止上升而Q0.4得电,执行左行动作。到达左限位,I0.4接通,如果此工作状态为连续工作状态,M0.2置1,M1.1清零,重复执行自动程序。若为单周期操作方式,M0.1置1,则机械手停在原点。在运行中,如按停止按钮,机械手的动作执行完当前一个周期后,回到原点自动停止。在运行中,PLC掉电,机械手动作停止。重新启动时,先用手动操作将机械手移回原点,再按启动按钮,便可重新开始自动操作。单步操作是指按下启动按钮动作1次。单步操作功能图与自动操作的功能图相似,只是每步动作都需按1次启动按钮。单步操作所用的输出继电器,定时器与其他操作所用的输出继电器,定时器相同。第五节 相关电气设备选择和校验4.5.1 系统调试系统调试分模拟调试和联机调试硬件部分的模拟调试可在断开主电路的情况下,主要试一试手动控制部分的可靠性。软件部分的模拟调试可借助于模拟开关和PLC输出端的指示灯进行。需要模拟量信号I/O时,可用电位器和万用表进行。调试时,可利用上述外部设备模拟各种现场开关和传感器的状态,然后观察PLC的输出逻辑是否正确。如果有错误则修改程序后反复调试。现在PLC的主流产品都可在PC上编程,并可在PC上进行模拟调试。连机调试时,可把编制好的程序下载到现场的PLC中。有时PLC也许只有一台,这时就要把PLC安装到控制柜相应的位置上。调试时一定要先将主电路断开,只对控制电路进行连机调试。通过现场连机调试信号的接入常常会发现软硬件中的问题,有时厂家对某些控制功能进行改造,反复调试后,控制系统才能交付使用。4.5.2 程序的运行与调试a将梯形图程序输入计算机。b对程序进行试运行。(1)将转换开关旋至“手动”档,按相应的动作按钮,观察机械手动作情况。(2)将转换开关旋至“单步”档,每按一次启动按钮,观察机械手是否向前执行下一个动作。(3)将转换开关旋至“单周期”档,每按一次启动按钮,观察机械手是否运行一个周期就停下来。(4)将转换开关旋至“连续”档,按下启动按钮,观察机械手是否连续运行。c记录调试程序结果并对不足之处进行修改。d最后再进行考机运行,一般连续运行72小时以上,以考核电气及机械运行是否稳定可靠。第六节 材料清单西门子S7-200PLC一台,双线圈电磁阀2个,单线圈电磁阀1个,按钮2个,限位开关4个,转换开关2个,导线若干。第七节 不足和改进本次毕业设计虽然参考了大量的书籍,也经过辅导老师的指导,但我仍然深知有许多不足与需要改进的地方。比如说在设计机械手操作面板时没有考虑到设计相应动作完成的指示灯,有了指示灯操作会变得很直观,操作会变得很方便。还有,在机械手的放松位置,最好应安装一个光电开关,用来检测工件是否已脱离机械手。虽然夹钳它是通过延时1.7s来表示夹紧、松开的动作完成的。但不排除会遇到特殊情况,很有可能1.7s后工件会因某特殊情况未能与机械手脱离,但机械手会依旧自动执行下一个动作,造成不可估量的后果。有了光电开关就不会出现这种情况,整个工作流

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论