毕业论文-交流电机.doc_第1页
毕业论文-交流电机.doc_第2页
毕业论文-交流电机.doc_第3页
毕业论文-交流电机.doc_第4页
毕业论文-交流电机.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目 录摘要4ABSTRACT4一、绪论5(一)引言5(二)变频调速系统5(三)SPWM控制技术5(四)PWM技术的新发展6(五)电流控制PWM技术6(六)电压矢量“等效”三电平PWM变频调速6(七)变频调速控制技术的发展趋势6二、异步电动机概述7(一)异步电动机旋转原理7(二)旋转磁场的产生8(三)电动机转速8三、异步电动机调速8(一)改变磁极对数(变极调速)8(二)改变转差率(变转差率调速)9(三)改变频率(变频调速)11四、异步电动机变频调速11(一)变频器与逆变器、斩波器11(二)变压变频调速(VVVF)11(三)变频器分类12五、变压变频协调控制16(一)基频以下调速17(二)基频以上调速20(三) V/F控制与V/F曲线20六、脉冲宽度调制(PWM)技术22参考文献23谢 辞24摘 要20世纪70年代后,大规模集成电路和计算机控制技术得到极大发展,现代控制理论也得到广泛应用,这使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应,由此它在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,而且易于实现过程自动化,深受工业行业的青睐。由此,变频调速技术变得越来越重要。关 键 词交流 变频 调速 变频调速 PWM ABSTRACT After the 20th century, 70s,a great development has been made in the large-scale integrated circuits and computer control technology. The AC Power Drive System was allowed to performance better, step by step with the wide speed range, high-speed range, high-speed precision, fast dynamic response. Performance in speed can be comparable with the DC electric drive. Frequencycontrol has the absolute advantage in AC Drive Technology. Its speed performance and reliability improve, prices lower.And it is easy to implement process automation, so it is famous in industry. Thus, frequency control technology is becoming increasingly important.KEY WORDS AC variable frequency speed control frequency control PWM一、绪论(一)引言交流电动机特别是异步电动机由于结构简单、价格便宜、维修方便等优点被广泛使用。但其调速性能在以前赶不上直流电动机,所以交流电动机的调速技术一直是世界各国研究的课题。20世纪60年代以后,随着电力电子技术的发展,半导体变流技术应用到交流调速系统中,特别是大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,都为交流调速的进一步发展创造了条件。人们研究出很多类型的交流调速系统,其中有些方法的调速性能已可与直流调速系统相媲美。因此,交流调速得到日益广泛的应用,目前在调速传动领域交流电动机已有取代直流电动机的趋势。早期的交流电动机调速方法,如采用绕线式异步电动机转子串电阻调速、笼型异步电动机变极调速,在定子绕组串电抗器调速等都存在效率低,不经济等缺点。交流变频调速的优越性早在20世纪20年代就已被人们认识,但受到元器件的限制,当时只能用闸流管构成逆变器,由于技资大,效率低,体积大而未能推广。20世纪50年代中期,晶闸管的研制成功,开创了电力电子技术发展的新时代。由于晶闸管具有体积小、重量轻、响应快、管压低等一系列优点,交流电动机调速技术有了飞跃发展,出现了交流异步电动机调压调速、串级调速等系统。20世纪70年代发展起来的变频调速,比上述两种调速方式效率更高,性能更好,在近30年得到了迅速发展。(二)变频调速系统1变频调速具有高效率、宽范围和高精度等特点,是目前运用最广泛且最有发展前途的调速方式。交流电动机变频调速系统的种类很多,从早期提出的电压源型变频器开始,相继发展了电流源型,脉宽调制等各种变频器。目前变频调速的主要方案有:交-交变频调速,交-直-交变频调速,同步电动机自控式变频调速,正弦波脉宽调制(SPWM)变频调速,矢量控制变频调速等。这些变频调速技术的发展很大程度上依赖于大功率半导体器件的制造水平。随着电力电子技术的发展,特别是可关断晶闹管GT0,电力晶体管GTR,绝缘门极晶体管IGBT,MOS晶闸管及MTC等具有自关断能力全控功率元件的发展,再加上控制单元也从分离元件发展到大规模数字集成电路及采用微机控制,从而使变频装置的快速性,可靠性及经济性不断提高,变频调速系统的性能也得到不断完善。(三)SPWM控制技术4正弦波脉宽调制(SPWM)技术在变频器中得到广泛的应用。SPWM变频器调压调频一次完成,整流器无需控制,简化了电路结构,而且由于以全波整流代替了相控整流,因而提高了输入端的功率因数,减小了高次谐波对电网的影响。此外,由于输出波形由方波改进为PWM波,减少了低次谐波,从而解决了电动机在低频区的转矩脉动问题,也降低了电动机的谐波损耗和噪声。PWM技术的应用是变频器的发展主流。SPWM的调制原理是使变频器的输出脉冲电压的面积与所希望输出的正弦波在相应区间内面积相等,改变调制波的频率和幅值即可调节逆变器输出电压的频率和幅值。SPWM变频器的输出电压虽然接近于正弦波,但感应电动机本身因为气隙磁通、转速与转子电流是强藕合的,所以调速性能不如直流电动机,采用矢量控制技术可提高其调速性能。矢量控制的原理是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组,两相交流绕组和直流绕组三者之间的等效关系,从而求出与交流电机等效的直流电机模型,即实现交流电动机的解耦,以便按照对直流电动机的控制方法对交流电动机进行控制,矢量控制要求由磁通观测器测出实际转子磁链幅值及相位,因此如何利用先进理论和技术实现转子磁链位置的精确观测是矢量控制技术的重要课题。(四)PWM技术的新发展变频调速系统是由主电路和控制电路两部分组成,近年来变频调速技术的发展重点在于控制电路部分,即PWM技术的产生和实现方法。(五)电流控制PWM技术电流控制PWM技术是一种新颖的控制技术,近年来得到了相当大的发展及较广泛的应用。电流控制PWM技术有不同的线路方案来实现,其共同特点是:通过监测电感电流直接反馈去控制功率开关的占空比,使功率开关的峰值电流直接跟随电压反馈回路中误差放大器输出的信号变化而变化。电流控制PWM技术常用的控制方法有:1线性电流控制:线性电流控制也叫正弦-三角形电流调节器或斜坡比较电流调节器,它适用于大量应用场合,尤其适用于中、低性能的传动,具有控制简单、对负载参数不敏感及具有较强鲁棒性的特点,而且它的性能随着现代功率器件开关频率的增加而得到改善。2 滞环电流控制:滞环电流控制是一种瞬态反馈系统,逆变器输出电流跟随给定电流。因为给定电流为正弦波,所以实际输出电流被限制在正弦波形的给定电流周围脉动,基本上是正弦波。该方法的优点是快速的瞬态响应,高度的准确性及较强的鲁棒性。然而,滞环电流控制与当今的全数字化趋势不相适应,因为它的瞬态响应性会被ADC及微机中断延时所降低。3 预测电流控制:预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此下一个调节周期PWM产生的电流矢量必将减小所预测的误差。该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应。目前这类调节器的局限性是响应速度及过程模型系数参数的准确性。综上所述,电流控制PWM技术还存在一些局限性,而应用现代控制理论可以克服这些缺点,所以应用现代控制论是它的必然发展趋势。(六)电压矢量“等效”三电平PWM变频调速电压矢量“等效”三电平PWM变频调速方式是一种新型的PWM变频调速方式,其工作原理是使变频器瞬时输出三相脉冲电压合成空间电压矢量与届时所期望输出的三相正弦波电压的合成空间电压矢量的模相等,而它的幅角按一定的间隔跳变。由于当电压一定时,三相正弦电压合成空间电压矢量的模是一个常量,这就给控制带来了很大的方便。电压矢量“等效”三电平PWM变频器用了12个元件构成主回路接线,使变频器实现了三电平电压输出。在控制方面引人空间电压矢量的概念,把变频器的输出状态转化为六角形基本空间电压矢量图,直接利用该图的内在关系,对变频器的输出实行频率、电压和PWM菱形调制。这种变频调速方式除了具有SPWM变频调速方式各方面的优异性能外,还具有SPWM变频调整方式望尘莫及的优异性能,如很小的输出电压谐波分量(3%)和非常好的低速特性。只要功率元件合适,可以做成大、中、小不同容量的变频调速装置,目前最大输出功率已达1000KW。(七)变频调速控制技术的发展趋势随着电力电子器件制造技术的发展和新型电路变换器的不断出现,现代控制理论向交流调速领域的渗透,特别是微型计算机及大规模集成电路的发展,交流电动机调速技术正向高频化、数字化和智能化方向发展。控制策略的应用:由于电力电子电路良好的控制特性及现代微电子技术的不断进步,使几乎所有新的控制理论,控制方法都得以在交流调速装置上应用和尝试。从最简单的转速开环恒压频比控制发展到基于动态模型按转子磁链定向的矢量控制和基于动态模型保持定子磁链恒定的直接转矩控制。近年来电力电子装置的控制技术研究十分活跃,各种现代控制理论,如自适应控制和滑模变结构控制,以及智能控制(如专家系统、模糊控制、神经网络、遗传算法等)和无速度传感的高动态性能控制都是研究的热点,这些研究必将把交流调速技术发展到一个新的水平。微机数字控制:微机控制或称数字控制,其优点是:使硬件简化,柔性的控制算法使控制灵活、可靠,易实现复杂的控制规律,便于故障诊断和监视。控制系统的软化对CPU芯片提出了更高的要求,为了实现高性能的交流调速,要进行矢量的坐标变换,磁通矢量的在线计算和适应参数变化而修正磁通模型,以及内部的加速度、速度、位置的重叠外环控制的在线实时调节等,都需要存储多种数掘和快速实时处理大量信息。可以预见,随着计算机芯片容量的增加和运算速度的加快,交流调速系统的性能将得到很大的提高。二、异步电动机概述(一)异步电动机旋转原理2 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。1.磁场以转速顺时针旋转,转子绕组切割磁力线,产生转子电流2.通电的转子绕组相对磁场运动,产生电磁力3.电磁力使转子绕组以转速旋转,方向与磁场旋转方向相同(二)旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: 1.在空间位置上互差rad电度角。这一点,由定子三相绕组的布置来保证 2.在时间上互差rad相位角(或周期)。这一点,由通入的三相交变电流来保证(三)电动机转速产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速必须低于定子磁场的转速,两者之差称为转差: 转差与定子磁场转速(常称为同步转速)之比,称为转差率: 同步转速由下式决定: 式中,为输入电流的频率,为旋转磁场的极对数。由此可得转子的转速 三、异步电动机调速由转速可知异步电动机调速有以下几方法:(一)改变磁极对数(变极调速)定子磁场的极对数取决于定子绕组的结构。所以,要改变,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。(二)改变转差率(变转差率调速)以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。1.定子调压调速当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。前面讲在空间位置上互差 rad电度角的三相绕组通以在时间上互差rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差rad电度角的两相绕组通以在时间上互差rad相位角(或周期)两相交变电流也可产生旋转磁场。下图中,电容C的作用就是把一相电流移相,以产生两相在时间上互差rad相位角(或1/2周期)交变电流,在空间位置上互差rad电度角的两相绕组是由风机的内部结构来保证的。 2.转子变电阻调速当定子电压一定时,电机主磁通不变,若减小定子电阻,则转子电流增大,转子受到的电磁力增大,转差率减小,转速降低;同理增大定子电阻,转速增加。转子变电阻调速的优点是设备和线路简单,投资不高,但其机械特性较软,调速范围受到一定限制,且低速时转差功率损耗较大,效率低,经济效益差。目前,转子变电阻调速只在一些调速要求不高的场合采用。3.电磁转差离合器调速异步电动机电磁转差离合器调速系统以恒定转速运转的异步电动机为原动机,通过改变电磁转差离合器的励磁电流进行速度调节。电磁转差离合器由电枢和磁极两部分组成,二者之间没有机械的联系,均可自由旋转。离合器的电枢与异步电动机转子轴相连并以恒速旋转,磁极与工作机械相连。 电磁转差离合器的工作原理是:如果磁极内励磁电流为零,电枢与磁极间没有任何电磁联系,磁极与工作机械静止不动,相当于负载被“脱离”;如果磁极内通入直流励磁电流,磁极即产生磁场,电枢由于被异步电动机拖动旋转,因而电枢与磁极间有相对运动而在电枢绕组中产生电流,并产生力矩,磁极将沿着电枢的运转方向而旋转,此时负载相当于被“合上”,调节磁极内通入的直流励磁电流,就可调节转速。电磁转差离合器调速的优点是控制简单,运行可靠,能平滑调速,采用闭环控制后可扩大调速范围,运用于通风类或恒转矩类负载;其缺点是低速时损耗大,效率低。4.串极调速前面介绍的定子调压调速、转子变电阻调速、电磁转差离合器调速均存在着转差功率损耗较大、效率低的问题,是很大的浪费。如何能够将消耗于转子电阻上的功率利用起来,同时又能提高调速性能?串极调速就是在这样的指导思想下提出来的。串极调速的基本思想是将转子中的转差功率通过变换装置加以利用,以提高设备的效率。串极调速的工作原理实际上是在转子回路中引入了一个与转子绕组感应电动势频率相同的可控的附加电动势,通过控制这个附加电动势的大小,来改变转子电流的大小,从而改变转速。串极调速具有机械特性比较硬、调速平滑、损耗小、效率高等优点,便于向大容量发展,但它也存在着功率因素较低的缺点。(三)改变频率(变频调速)当极对数不变时,电动机转子转速与定子电源频率成正比,因此,连续的改变供电电源的频率,就可以连续平滑的调节电动机的转速。异步电动机变频调速具有调速范围广、调速平滑性能好、机械特性较硬的优点,可以方便的实现恒转矩或恒功率调速,整个调速特性与直流电动机调压调速和弱磁调速十分相似,并可与直流调速相比美。四、异步电动机变频调速3(一)变频器与逆变器、斩波器变频调速是以变频器向交流电动机供电,并构成开环或闭环系统。变频器是把固定电压、固定频率的交流电变换为可调电压、可调频率的交流电的变换器,是异步电动机变频调速的控制装置。逆变器是将固定直流电压变换成固定的或可调的交流电压的装置(DCAC变换)。将固定直流电压变换成可调的直流电压的装置称为斩波器(DCDC变换)。(二)变压变频调速(VVVF)在进行电机调速时,通常要考虑的一个重要因素是,希望保持电机中每极磁通量为额定值,并保持不变。如果磁通太弱,即电机出现欠励磁,将会影响电机的输出转矩,由 (式中 :电磁转矩,:主磁通,:转子电流,:转子回路功率因素,:比例系数),可知,电机磁通的减小,势必造成电机电磁转矩的减小。由于电机设计时,电机的磁通常处于接近饱和值,如果进一步增大磁通,将使电机铁心出现饱和,从而导致电机中流过很大的励磁电流,增加电机的铜损耗和铁损耗,严重时会因绕组过热而损坏电机。因此,在改变电机频率时,应对电机的电压进行协调控制,以维持电机磁通的恒定。为此,用于交流电气传动中的变频器实际上是变压(Variable Voltage,简称VV)变频(Variable Frequency,简称VF)器,即VVVF。所以,通常也把这种变频器叫作VVVF装置或VVVF。根据异步电动机的控制方式不同,变压变频调速可分为恒定压频比(V/F)控制变频调速、矢量控制(FOC)变频调速、 直接转矩控制变频调速等。(三)变频器分类1.从变频器主电路的结构形式上可分为交直交变频器和交交变频器。交直交变频器首先通过整流电路将电网的交流电整流成直流电,再由逆变电路将直流电逆变为频率和幅值均可变的交流电。交直交变频器主电路结构如下图。 交交变频器把一种频率的交流电直接变换为另一种频率的交流电,中间不经过直流环节,又称为周波变换器。 常用的交交变频器输出的每一相都是一个两组晶闸管整流装置反并联的可逆线路。正、反向两组按一定周期相互切换,在负载上就获得交变的输出电压。输出电压的幅值决定于各组整流装置的控制角,输出电压的频率决定于两组整流装置的切换频率。如果控制角一直不变,则输出平均电压是方波,要的到正弦波输出,就在每一组整流器导通期间不断改变其控制角。对于三相负载,交交变频器其他两相也各用一套反并联的可逆线路,输出平均电压相位依次相差120。交交变频器由其控制方式决定了它的最高输出频率只能达到电源频率的1/31/2,不能高速运行,这是它的主要缺点。但由于没有中间环节,不需换流,提高了变频效率,并能实现四象限运行,因而多用于低速大功率系统中,如回转窑、轧钢机等。2.从变频电源的性质上看,可分为电压型变频器和电流型变频器。对交直交变频器,电压型变频器与电流型变频器的主要区别在于中间直流环节采用什么样的滤波器。电压型变频器的主电路典型形式如下图。在电路中中间直流环节采用大电容滤波,直流电压波形比较平直,使施加于负载上的电压值基本上不受负载的影响,而基本保持恒定,类似于电压源,因而称之为电压型变频器。 电压型变频器逆变输出的交流电压为矩形波或阶梯波,而电流的波形经过电动机负载滤波后接近于正弦波,但有较大的谐波分量。由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以主要优点是运行几乎不受负载的功率因素或换流的影响;缺点是当负载出现短路或在变频器运行状态下投入负载,都易出现过电流,必须在极短的时间内施加保护措施。电流型变频器与电压型变频器在主电路结构上基本相似,所不同的是电流型变频器的中间直流环节采用大电感滤波,见下图,直流电流波形比较平直,使施加于负载上的电流值稳定不变,基本不受负载的影响,其特性类似于电流源,所以称之为电流型变频器。 电流型变频器逆变输出的交流电流为矩形波或阶梯波,当负载为异步电动机时,电压波形接近于正弦波。电流型变频器的整流部分一般采用相控整流,或直流斩波,通过改变直流电压来控制直流电流,构成可调的直流电源,达到控制输出的目的。电流型变频器由于电流的可控性较好,可以限制因逆变装置换流失败或负载短路等引起的过电流,保护的可靠性较高,所以多用于要求频繁加减速或四象限运行的场合。一般的交交变频器虽然没有滤波电容,但供电电源的低阻抗使它具有电压源的性质,也属于电压型变频器。也有的交交变频器用电抗器将输出电流强制变成矩形波或阶梯波,具有电流源的性质,属于电流型变频器。3.交直交变频器根据VVVF调制技术不同,分为PAM和PWM两种。PAM是把VV和VF分开完成的,称为脉冲幅值调制(Pulse Amplitude Modulation)方式,简称PAM方式。PAM调制方式又有两种:一种是调压采用可控整流,即把交流电整流为直流电的同时进行相控整流调压,调频采用三相六拍逆变器,这种方式结构简单,控制方便,但由于输入环节采用晶闸管可控整流器,当电压调得较低时,电网端功率因素较低,而输出环节采用晶闸管组成的三相六拍逆变器,每周换相六次,输出的谐波较大。其基本结构见图a;另一种是采用不控整流、斩波调压,即整流环节采用二极管不控整流,只整流不调压,再单独设置PWM斩波器,用脉宽调压,调频仍采用三相六拍逆变器,这种方式虽然多了一个环节,但调压时输入功率因素不变,克服了上面那种方式中输入功率因数低的缺点。而其输出逆变环节未变,仍有谐波较大的问题。其基本结构见图b。PWM是将VV与VF集中于逆变器一起来完成的,称为脉冲宽度调制(Pulse Width Modulation)方式,简称PWM方式。PWM调制方式采用不控整流,则输入功率因素不变,用PWM逆变同时进行调压和调频,则输出谐波可以减少。其基本结构见图c。在VVVF调制技术发展的早期均采用PAM方式,这是由于当时的半导体器件是普通晶闸管等半控型器件,其开关频率不高,所以逆变器输出的交流电压波形只能是方波。而要使方波电压的有效值随输出频率的变化而改变,只能靠改变方波的幅值,即只能靠前面的环节改变中间直流电压的大小。随着全控型快速半导体开关器件BJT、IGBT、GTO等的发展,才逐渐发展为PWM方式。由于PWM方式具有输入功率因数高、输出谐波少的优点,因此在中小功率的变频器中,几乎全部采用PWM方式,但由于大功率、高电压的全控型开关器件的价格还较昂贵,所以为降低成本,在数百千瓦以上的大功率变频器中,有时仍需要使用以普通晶闸管为开关器件的PAM方式。五、变压变频协调控制前面讲在进行电机调速时,为保持电动机的磁通恒定,需要对电机的电压与频率进行协调控制。那么应该怎样对电机的电压与频率进行协调控制呢?对此,需要考虑基频(额定频率)以下和基频以上两种情况。基频,即基本频率,是变频器对电动机进行恒转矩控制和恒功率控制的分界线,应按电动机的额定电压(指额定输出电压,是变频器输出电压中的最大值,通常它总是和输入电压相等)进行设定,即在大多数情况下,额定输出电压就是变频器输出频率等于基本频率时的输出电压值,所以,基本频率又等于额定频率(即与电动机额定输出电压对应的频率)。异步电动机变压变频调速时,通常在基频以下采用恒转矩调速,基频以上采用恒功率调速。(一)基频以下调速在一定调速范围内维持磁通恒定,在相同的转矩相位角的条件下,如果能够控制电机的电流为恒定,即可控制电机的转矩为恒定,称为恒转矩控制,即电机在速度变化的动态过程中,具有输出恒定转矩的能力。由于恒定控制能在一定调速范围内近似维持磁通恒定,因此恒定控制属于恒转矩控制。严格地说,只有控制恒定才能控制电机的转矩为恒定。 1.恒定气隙磁通控制(恒定控制)根据异步电动机定子的感应电势 (式中 为气隙磁通在每相定子感应的电动势,为电源频率,为定子每相绕组串联匝数,为与绕组结构有关的常数,为每极气隙磁通),可知,要保持不变,当频率变化时,必须同时改变电动势的大小,使 即采用恒定电动势与频率比的控制方式。(恒定控制)又,电机定子电压 (式中 为定子电压,为定子电阻,为定子漏磁电抗,为定子电流),如果在电压、频率协调控制中,适当地提高电压,使它在克服定子阻抗压降以后,能维持为恒值,则无论频率高低,每极磁通均为常值,就可实现恒定控制。恒定控制的稳态性能优于下面讲的恒定控制,它正是恒定控制中补偿定子压降所追求的目标。2.恒定压频比控制(恒定控制)根据上面的公式,在电动机正常运行时,由于电动机定子电阻和定子漏磁电抗的压降较小,可以忽略,则电机定子电压与定子感应电动近似相等,即 则得 这就是恒压频比的控制方式。(恒定控制)由于电机的感应电势检测和控制比较困难,考虑到在电机正常运转时电机的电压和电势近似相等,因此可以通过控制恒定,以保持气隙磁通基本恒定。恒定控制是异步电动机变频调速的最基本控制方式,它在控制电动机的电源频率变化的同时控制变频器的输出电压,并使二者之比为恒定,从而使电动机的磁通基本保持恒定。恒定控制的出发点是电动机的稳态数学模型,它的控制效果只有在稳态时才符合要求。在过渡过程中,电动机所产生的转矩需要按照电动机的动态数学模型进行分析计算。因此恒定控制的电动机系统难以满足动态性能的要求。在起动时,为了使系统能满足稳态运行的条件,频率的变化应尽可能缓慢,以避免电动机出现失速现象,即电动机转子的转速与旋转磁场的转速相差很大。滑差增大,造成电动机中流过很大的电流,电动机输出的转矩将减小。恒定控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,突出优点是可以进行电机的开环速度控制。恒定控制存在的主要问题是低速性能较差。这是由于低速时异步电动机定子电阻压降所占比重增大,已不能忽略,电机的电压和电势近似相等的条件已不满足,仍按恒定控制已不能保持电机磁通恒定。电机磁通的减小,电机电磁转矩的减小。因此,在低频运行的时候,要适当的加大的值,以补偿定子压降。若采用开环控制,则除了定子漏阻抗的影响外,变频器桥臂上下开关元件的互锁时间也是影响电机低速性能的重要原因。对电压型变频器,考虑到电力半导体器件的导通和关断均需一定时间,为防止上下元件在导通/关断切换时出现直通,造成短路而损坏,在控制导通时设置一段开关导通延迟时间。在开关导通延迟时间内,桥臂上下电力半导体器件均处于关断状态,因此又将开关导通延迟时间称为互锁时间。互锁时间的长短与电力半导体器件的种类有关。由于互锁时间的存在,变频器的输出电压将比控制电压低。在低频的时候,变频器的输出电压比较低,PWM逆变脉冲的占空比比较小,这时互锁时间的影响就比较大,从而导致电机的低速性能降低。互锁时间造成的压降还会引起转矩脉动,在一定条件下将会引起转速、电流的振荡,严重时变频器不能运行。对磁通进行闭环控制是改善恒定控制性能的十分有效的方法。采用磁通控制后,电机的电流波形的到明显改善,气隙磁通更加接近圆形。3.恒定转子磁通控制(恒定控制)如果把电压、频率协调控制中的电压进一步再提高一些,把转子漏抗上的压降也抵消掉,便的到恒定控制,其机械特性是一条直线。显然,恒定控制的稳态性能最好,可以获得和直流电机一样的线性机械特性。这正是高性能交流变频调速所要求的性能。问题是,怎样控制变频器的电压和频率才能获得恒定的呢?按照电动势与磁通的关系 可以看出,当频率恒定时,电动势与磁通成正比。在上式中,气隙磁通的感应电动势对应于气隙磁通,那么,转子磁通的感应电动势就应该对应于转子磁通 由此看见,只要能够按照转子磁通 进行控制,就可获得恒定控制。这正是矢量控制系统所遵循的原则。(二)基频以上调速当电机的电压随着频率的增加而升高时,若电机的电压已达到电机的额定电压,继续增加电压有可能破坏电机的绝缘。为此,在电机达到额定电压后,即使频率增加仍维持电机电压不变。这样,电机所能输出的功率由电机的额定电压和额定电流的乘积所决定,不随频率的变化而变化。具有恒功率特性。在基频以上调速时,频率可以从基频往上增加,但电压却不能超过额定电压,此时,电机调速属于恒转矩调速。电机在恒转矩调速时,磁通与频率成反比地降低,相当于直流电机弱磁升速的情况。(三) V/F控制与V/F曲线1.V/F控制在恒定控制中,频率下降时,定子电阻压降在中所占比例增大,造成气隙磁通和转矩下降,采取适当提高的方法,来低偿定子电阻压降的增大,而保持,最终使电动机的转矩得到补偿。这种方法称为转矩补偿,因为它是通过提高而得到的,故又称V/F控制或电压补偿。许多书中则直译为转矩提升(Torque boost)。2.基本V/F曲线恒值时的V/F曲线称为基本V/F曲线(见下图中曲线a),它表明了没有补偿时的电压和频率之间的关系。它是进行V/F控制时的基准线。3.全补偿V/F曲线不论为多大(在的范围内),通过补偿,都能保持,称为完全补偿V/F曲线,简称全补偿V/F曲线(见下图中曲线b)。 全补偿V/F曲线与电动机的参数有关,而电动机的型号规格很多,其全补偿V/F曲线各不相同,即使是同一型号、同一规格的电动机,应用场合的不同,其全补偿V/F曲线各不相同。这是因为转矩补偿的实质是用提高电压的方法来补偿定子阻抗压降的。而定子阻抗压降的大小是和定子电流的大小有关的,定子电流的大小又与负载有关。因此,电动机的负载大小不同,所需的补偿电压(从而全补偿V/F曲线)也不一样。4.过分补偿有的用户认为,补偿小可能会带不动负载,补偿大了没问题,故而在设定V/F曲线时“宁小毋大”,或在设定V/F曲线时,只根据最重负载的要求来设定,则在轻载或空载时,就会出现补偿过分。补偿过分,说明电压提升过多,使电动势在中的比例相对减小,则定子电流增加。但电动机的负载与转速均未变,故定子电流增大,励磁电流必增大,其结果是磁通增加。磁通增加,将使铁心达到饱和,的波形将逐渐地由正弦波变成平顶波,而励磁电流则为尖顶波。补偿越过分,铁心的饱和程度越深,的峰值也越高,甚至引起变频器因过电流而跳闸。六、脉冲宽度调制(PWM)技术5PWM技术是利用半导体开关器件的导通与关断把直流电压变为电压脉冲序列,并通过控制电压脉冲宽度或电压脉冲周期以达到改变电压的目的,或者通过控制电压脉冲宽度和电压脉冲序列的周期以达到变压和变频的目的。在变频调速中,前者主要应用于PWM斩波(DCDC变换),后者主要应用于PWM逆变(DCAC变换)。PWM脉宽调制是利用相当于基波分量的信号波(调制波)对三角载波进行调制,以达到调节输出脉冲宽度的目的。相当于基波分量的信号波(调制波)并不一定指正弦波,在PWM优化模式控制中可以是预畸变的信号波,正弦信号波是一种最通常的调制信号,但决不是最优信号。PWM控制技术有许多种,并且还在不断发展中。但从控制思想上分,可把它们分成四类,即等脉宽PWM法、正弦波PWM法(SPWM)、磁链跟踪PWM法(SVPWM)和电流跟踪PWM法等。参考文献1.李宁,陈桂 运动控制系统 北京-高等教育出版社20042.张燕宾 电动机变频调速图解 北京-中国电力出版社 20033.李华德 交流调速控制系统 北京-电子工业出版社 20034.李发海,王岩 电机与拖动基础 北京-清华大学出版社 19945.周顺荣 电机学 北京-科学出版社 2007谢 辞首先要感谢我的指导老师周东涛,在他的认真引导下,我们很快弥补了知识上的不足,解决了一个个的技术难题。本论文是在周东涛老师的悉心帮助和指导下完成的,他给了我许多启发,使我能够顺利地完成了课题的分析、设计、实现和论文撰写。感谢我的搭档张朝建、马喜红、王兴民、李兰妹同学,他们对我提供了许多建议和启迪,帮助我不断改进,从而解决了难题,从毕业设计到毕业论文的顺利完成,他们都付出了辛勤的汗水,造就了课题的成功。附件三:毕业设计(论文)装订顺序及字体要求1封面 :全校采用统一格式(见附表1),正标题使用3号黑体字居中,副标题使用4号黑体字居中(前加破折号),其他项目使用4号楷体字。2、开题报告(见附表2)3任务书(理工科学生应用,见附表3)4成绩评定表(见附表4)5目录:另起页;标题使用3号黑体字,“目录”两字中间空3个汉字字符格;内容使用4号宋体字,要求标明页码,每项内容与对应的页码之间要求使用省略号分隔开。6中文摘要(含关键词):另起页;标题使用3号黑体字,两个标题各自独占行,居中,“摘要”两字中间空3个汉字字符格,“关键词”三字每两字中间空1个汉字字符格;内容使用4号宋体字,单倍行距。7英文摘要(含关键词):与中文摘要和关键词同页;标题使用小2号Times New Roman字体,两个标题各自独占行,居中;内容使用小3号Times New Roman字体,单倍行距。8正文 : 另起页;正文文中标题: 一级标题:标题序号为“一、”, 4号黑体字,独占行,末尾不加标点符号。 二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。 三级标题:标题序号为“ 1. ”与正文字号、字体相同。 四级标题:标题序号为“(1)”与正文字号、字体相同。五级标题:标题序号为“ ”与正文字号、字体相同。其它内容全部使用小4号宋体字,单倍行距。9参考文献:另起页;标题使用3号黑体字,标题汉字之间无空格,独占行,居中;内容使用小4号宋体字,单倍行距。10注释:另起页;标题使用3号黑体字,“注释”两字中间空3个汉字字符格,独占行,居中;内容使用小4号宋体字,单倍行距。11附录:另起页;标题使用3号黑体字,“附录”两字中间空3个汉字字符格,独占行,居中;内容使用小4号宋体字,单倍行距。12谢辞:另起页;标题使用3号黑体字,“谢辞”两字中间空3个汉字字符格,独占行,居中;内容使用4号宋体字,单倍行距。13封底:另起页,空白。 袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇袁节膅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论