汽车ABS的结构与检修毕业论文.doc_第1页
汽车ABS的结构与检修毕业论文.doc_第2页
汽车ABS的结构与检修毕业论文.doc_第3页
汽车ABS的结构与检修毕业论文.doc_第4页
汽车ABS的结构与检修毕业论文.doc_第5页
已阅读5页,还剩97页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第102页本科生毕业设计汽车ABS的结构与检修毕业论文一、电控防抱死系统的发展及分类1、电控防抱死制动系统(ABS)的发展及应用现状 基于制动防抱理论的制动系统首先是应用于火车和飞机上。1936年,德国博世公司(BOSCH)申请一项电液控制的ABS装置专利,促进了ABS技术在汽车上的应用。汽车上开始使用ABS始于1950年代中期福特汽车公司,1954年福特汽车公司在林肯车上装用法国航空公司的ABS装置,这种ABS装置控制部分采用机械式,结构复杂,功能相对单一,只有在特定车辆和工况下防抱死才有效,因此制动效果并不理想。机械结构复杂使ABS装置的可靠性差、控制精度低、价格偏高。ABS技术在汽车上的推广应用举步艰难。直到70年代后期,由于电子技术迅猛发展,为ABS技术在汽车上应用提供了可靠的技术支持。ABS控制部分采用了电子控制,其反应速度、控制精度和可靠性都显著提高,制动效果也明显改善,同时其体积逐步变小,质量逐步减轻,控制与诊断功能不断增强,价格也逐渐降低。这段时期许多家公司都相继研制了形式多样的ABS装置。 进入90年代后,ABS技术不断发展成熟,控制精度、控制功能不断完善。现在发达国家已广泛采用ABS技术,ABS装置已成为汽车的必要装备。北美和西欧的各类客车和轻型货车ABS的装备率已达90%以上,轿车ABS的装备率在60%左右,运送危险品的货车ABS的装备率为100%。ABS装置制造商主要有:德国博世公司(BOSCH),欧、美、日、韩国车采用最多;美国德科公司(DELCO),美国通用及韩国大宇汽车采用;美国本迪克斯公司(BENDIX),美国克莱斯勒汽车采用;还有德国戴维斯公司(TEVES)、德国瓦布科(WABCO)、美国凯尔西海斯公(KELSEYHAYES)等,这些公司的ABS产品都在广泛地应用,而且还在不断发展、更新和换代。 近年来,ABS技术在我国也正在推广和应用,1999年我国制定的国家强制性标准GB12676-1999汽车制动系统结构、性能和试验方法中已把装用ABS作为强制性法规。此后一汽大众、二汽富康、上海大众、重庆长安、上海通用等均开始采用ABS技术,但这些ABS装置我国均没有自主的知识产权。 国内液压ABS技术含量与国外虽有一定的差距,但在政府的大力支持和国内丰富的人力资源配合下,相信国内可以在较短的时间内在ABS技术某些领域赶超国际水平。根据国内外的一些研究动态和高档轿车的实际应用表明,ABS技术将沿着以下几个方面继续发展:1)ABS和驱动防滑控制装置ASR一体化。ABS以防止车轮抱死为目的,ASR是防止车轮过分滑转,ABS是为了缓解制动,ASR是为了施加制动。由于二者技术上较接近,且都能在低附着地面上充分体现它们的作用,所以将二者有机的结合起来。2)动态稳定控制系统VDC(或电子稳定控制ESP)。VDC主要在ABS/ASR基础上解决汽车转向行驶时的方向稳定性问题。3)ABS/ASR与自动巡航系统(ACC)集成。4)减小体积,降低重量。5)随着ABS与新一代制动系统的结合,如电子液压制动EHB、电子机械制动EMB,使得ABS有了更快的的响应速度,更好的控制效果,而且更容易与其它电子系统集成。6)在ABS系统中嵌入电子制动力分配装置(EBD)构成了ABS+EBD系统。EBD的功能就是在汽车开始制动压力调节之前,高速计算出汽车四个轮胎与路面间的附着力大小,然后调节车轮与附着力的匹配,进一步提高车辆制动时的稳定性,同时尽可能地缩短制动距离。2、电控防抱死制动系统(ABS)的分类1)按控制方式分可分为单参数控制和双参数控制(ABS) (1)单参数控制(ABS) 它以控制车轮的角减速度为对象,控制车轮的制动力,实现防抱死制 动,其结构主要由轮速传感器、控制器(电脑)及电磁阀组成。(2)双参数控制(ABS) 双参数控制的ABS,由车速传感器(测速雷达)、轮速传感器、控制装置(电脑)和执行机构组成。 其工作原理是车速传感器和轮速传感器,分别将车速和轮速信号输入电脑,由电脑计算出实际滑移率,并与理想滑移率15%20%作比较,再通过电磁阀增减制动器的制动力。2)控制通道 对能够独立进行制动压力调节的制动管路称为控制通道。独立控制是指某个车轮的制动压力占用一个控制通道可以单独进行调节;一同控制是指两个车轮的制动压力是一同进行调节的。高选原则一同控制是指保证附着力较大的车轮不发生制动抱死或驱动防滑为原则进行制动压力调节;反之,称为低选原则一同控制。按控制通道数分可以分为:四通道ABS系统、三通道ABS系统、双通道ABS系统与单通道ABS系统。 (1)四通道ABS系统(如图1)图1 四通道四传感器ABS(a)双制动管路前后布置(b)双制动管路对角布置组成:四个轮速传感器,在通往四个车轮制动分泵的管路中,各设一个制动压力调节分装置,分别对各个车轮进行独立控制。优点:附着系数利用率高,制动时可以最大限度地利用每个车轮的最大附着力。适用:汽车左右两侧车轮附着系数相近的路面,不仅可以获得良好的方向稳定性和方向操纵能力,而且可以得到最短的制动距离。缺点:如果汽车左右轮附着力相差较大,如:行驶在附着系数对分的路面上或汽车两侧垂直载荷相差较大时,制动时两个车轮的地面制动力就相差较大,因此会产生横摆力矩,使车身向制动力较大的一侧跑偏,不能保持汽车按预定方向行驶,会影响汽车的方向稳定性,一般驾驶员修正有些困难。结论:在具有驱动防滑转(ASR)功能时采用四通道式。(2)三通道ABS系统(如图2)图2 三通道ABS(a)三通道四传感器ABS(对角布置)(b)三通道四传感器ABS(前后布置)(c)三通道三传感器ABS结构:四个轮速传感器或三个轮速传感器。一般三通道ABS是对两前轮进行独立控制,两后轮按低选原则进行一同控制,也称它为混合控制。图2-(a)所示适用前轮驱动汽车及按对角布置的双管路制动系统。该系统中虽然在通往四个车轮制动分泵(轮缸)的制动管路中,各设置一制动压力调节分装置,但两个后轮制动压力调节分装置却是由电子控制器按低选原则一同控制的,因此,实际上仍然是三通道ABS。图2-(b)(c)所示适用后轮驱动汽车及按前后布置的双管路制动系统。在通往两后轮制动分泵(轮缸)的制动总管路中,只设置一个制动压力调节分装置,以便对两后轮制动分泵的制动压力进行一同控制。由于三通道ABS对两后轮进行一同控制,对于后轮驱动的汽车,也可以在传动系统中(如主减速器或变速器中)只设置一个轮速传感器,感测两后轮的平均转速,实现近似低选原则的一同控制。两后轮按低选原则进行一同控制时,可以保证汽车在各种条件下左右两后轮的制动力相等,即使两侧车轮的附着力相差较大,两个车轮的制动力都限制在附着力较小的水平,使两个后轮的制动力始终保持平衡,保证汽车在各种条件下制动时都具有良好的方向稳定性。但也可能出现附着系数大的一侧后轮的附着力不能充分利用的问题,使汽车的总制动力有所减小。应该看到,在紧急制动时,由于发生轴荷前移,在汽车的总制动力中,后轮的制动力所占的比重较小,尤其是小轿车,使前轮的附着力比后轮的附着力大得多,通常后轮制动力只占总制动力的30左右,因此,后轮附着力未能充分利用的损失对汽车的总制动力影响不大。对两前轮进行独立控制,主要考虑到小轿车,特别是前轮驱动的汽车,前轮的制动力在汽车总制动中所占的比例较大(可达70左右),可以充分利用两前轮的附着力。一方面使汽车获得尽可能大的总制动力,利于缩短制动距离,另一方面更重要的能在制动中使两前轮始终保持较大的横向附着力,使汽车保持良好转向控制能力。尽管两前轮独立控制可能导致两前轮制动力不平衡,但由于两前轮制动力不平衡对汽车行驶方向稳定性影响相对较小,而且可以通过驾驶员的转向操纵对由此造成的影响进行修正。因此,三通道ABS在小轿车上被普遍采用。 (3)双通道ABS系统(如图3)图3 双通道ABS(a)二通道三传感器ABS(b)二通道四传感器ABS(c)二通道二传感器ABS(d)二通道二传感器ABS(a)图中,前轮附着力相差较大时,高选。(d)图中,在后制动管路中设置比例阀或低选择阀。双通道式:难以在方向稳定性、转向操纵性和制动距离各方面得到兼顾,目前采用很少。(4)单通道ABS系统(如图4)图4 一通道一传感器ABS由于前轮无控制,故易抱死,转向操纵性差,制动距离较长。二、电控防抱死制动系统(ABS)的基本组成与工作原理1、ABS的基本组成ABS是在普通制动系统的基础上,加装ABS ECU、传感器、执行器等装置而形成的制动系统,其基本构成如图5。其结构形式和控制方法因车而异。图5 制动防抱死系统(ABS)的基本组成2、传感器1)轮速传感器(1)作用:检测车轮运动状态,获得车轮转速信号,并将车轮的减速度(或加速度)信号送给ECU。典型轮速传感器外形与基本结构如图6。(2)安装:一般在车轮处,但也有设置在主减速器或变速器中。图6 轮速传感器的外形与基本结构(a)轮速传感器外形(b)轮速传感器的基本结构2)车速传感器 作用:检测车速,给ECU提供车速信号,用于滑移率控制方式。3)减速度传感器作用:在汽车制动时,获得汽车减速度信号。因为汽车在高附着系数路面上制动时,汽车减速度大,在低附着系数路面上制动时,汽车减速度小,因而该信号送入ECU后,可以对路面进行区别,判断路面附着系数高低情况。当判定汽车行驶在雪地、结冰路等易打滑的路面上时,采取相应控制措施,以提高制动性能。多用于四轮驱动控制系统3、电子控制单元(ECU)接收轮速、车速信号、发动机转速信号、制动信号、液位等信号,分析判定车轮制动状态,需要时发出调节指令,并具有报警、记忆、存储、自诊断和保护功能。ECU控制原理如图7。图7 ABS控制电脑原理图 4、执行器1)油泵及储能器作用:产生控制油压,使制动压力调节装置工作。2)制动压力调节器制动压力调节器是ABS系统中最主要的执行器,一般都设在制动总泵(主缸)与车轮制动分泵(轮缸)之间。(1)作用:根据ECU的控制指令,自动调节制动分泵(轮缸)的制动压力。(2)分类根据动力来源分可以分为:气压式与液压式。气压式:主要用在大型客车和载重汽车上。液压式:主要用在小轿车和一些轻型载重汽车上。根据结构关系分可以分为:分离式与整体式。分离式:制动压力调节器自成一体,通过制动管路与制动总泵相连。图8 分离式液压调节器组件 整体式ABS系统总成整体式:制动压力调节器与制动总泵构成一个整体。如图8。根据调压方式分可以分为:流通式与变容式。流通式:在制动总泵和制动分泵之间串联一个或两个电磁阀,由电磁阀根据ECU的指令,通过控制,使制动分泵的制动液回到制动总泵(或储液器),或使制动总泵(或储能器)的制动液流入制动分泵,或者使制动分泵的制动液既不流入也不流出,以实现制动分泵压力的减小、增大或保持。变容式:如图9。在原制动管路中,并联一套液压装置,该装置中有一个类似活塞的装置。工作时根据ECU的指令,该装置首先将制动分泵和总泵隔离,然后通过电磁阀的开闭或电动机的转动等不同方式,控制活塞在调压缸中运动,使调压缸工作室至制动分泵的容积发生变化。容积增大,实现制动压力减小;容积减小,实现制动压力增大;容积不变,实现压力保持。1制动踏板 2制动主缸 3储能器 4电动泵 5储液室 6电磁线圈 7电磁阀 8柱塞 9电控单元 10制动轮缸11转速传感器 12车轮 13单向阀 14控制活塞图9 可变容积式制动压力调节器常规制动(升压)状态5、ABS警示装置1)作用:报警灯可显示系统工作状态及自诊断报警。2)黄色的ABS灯可显示ABS控制系统的故障(如4个轮速传感器、4个电磁阀、ABS主继电器、油泵继电器报警灯继电器等),它报警后汽车仍然能维持常规制动,但ABS系统已断电保护,停止工作。3)红色的BRAKE灯亮,显示驻车制动开关、行车制动开关信号、液压高低信号、液位高低信号等有故障,危险性大,应停车检修。三、博世(BOSCH)ABS系统制动调节过程1、常规制动(ABS不工作)时:电磁阀不通电,制动总缸与分缸之间自由连通。踩下制动踏板时分缸持续制动,离开制动踏板时油液返回主缸,制动结束。2、ABS工作时:1)压力增大:电磁阀和电动泵不通电,制动油液从主缸流入分缸进行制动。2)压力保持:当车轮趋于抱死时,电子控制单元给电磁线圈通小电流,此时主缸与分缸之间的通道被切断,使车轮压力保持不变。3)压力减小:当车轮继续趋于抱死时,电子控制单元给电磁线圈通大电流,此时输出阀开启,分缸与回油道接通,车轮制动力下降,转速上升。然后ABS电子控制单元再给电磁线圈断电,车轮制动力又会上升,如此反复,ECU通过执行器不断地控制制动系统完成增压、保压、降压、升压的过程,使车轮始终处于将要抱死而又未抱死的临界状态,把车轮滑动率控制在最佳(10%20%)的范围内,以获得最好的制动效果。具体过程如图10。1低压储液器 2由电动机驱动的液压泵 3制动总泵(主缸)4进液阀(2/2常开电磁阀) 5出液阀(2/2常闭电磁阀)6车轮制动轮缸(分泵)图10 制动压力调节过程四、电控防抱死制动系统(ABS)的检修1、检修ABS的注意事项1)ABS系统与普通制动系统密不可分,普通制动系统一旦出现故障,ABS系统也就不能工作,故当车辆制动系统出现问题时,应首先判明是ABS系统故障还是普通制动系统故障,而不能把注意力全部集中在传感器、电控单元和制动压力调节器上。2)ABS电控单元对电压、静电非常敏感,维修时稍有不慎就可能会损坏电控单元。因此,点火开关接通时不可以拔或插电控单元上的连接器 。3)维修车轮转速传感器时应特别小心,不要碰伤传感器头,不要用传感器齿圈做撬面,以免损坏,安装时不可用力敲击,磁隙可以调整的,但要用非磁性工具调整。 4)装有 ABS 的汽车,每年应更换一次制动液。否则,制动液吸湿性很强,含水后不仅会降低沸点,产生腐蚀,而且还会造成制动效能衰退。5)要注意不要让电控单元受碰撞和敲击,不能处在高温环境中。6)当蓄电池电压过低时,ABS系统将不能工作,所以特别在汽车停驶长时间后启动时,应检查蓄电池电压。7)具有ABS系统的制动系应使用专用的管路,因为该系统往往具有很高的压力。8)更换制动器或更换液压制动系部件后,应排净制动管路中的空气,以免影响制动系统的正常工作。 2、ABS故障检修的一般步骤1)确认故障情况和故障症状。2)先对ABS系统进行直观检查,检查制动液渗漏、导线破损、插头松脱、制动液液位过低等情况。3)利用自诊断系统进行读取故障码,然后根据维修手册来寻找故障位置。4)根据故障情况,利用必要的工具和仪器对故障部位进行具体的检查,确定故障部位和故障原因。5)修理或更换部件以排除故障。6)清除故障代码。7)检查故障警告灯是否持续点亮。8)路试。3、ABS主要部件的检修1)轮速传感器的检修轮速传感器可能出现的故障有:感应线圈短路、断路或接触不良,传感器齿圈上的齿有缺损或脏污,信号探头安装不牢或磁极与齿圈之间有赃物等。轮速传感器在安装时注意其传感头的额定扭矩,不要拧得过紧或过松,否则极轴与齿圈的间隙过小或过大,影响轮速信号的产生与输出;检查轮速传感器与桥壳之间无间隙;传感器齿圈的齿面应无刮痕、裂缝、变形或缺齿等,严重时应更换转子轴总成。2)ABS ECU的检修首先检查ABS ECU线束插接器有无松动,连接导线有无松脱;再检查其线束插接器各端子的电压、电阻值或波形与标准值进行比较。如果与之相连的部件和线路正常,则应更换ECU 再试。更换ABS ECU时,将点火开关关闭,拆下ECU上的线束插头,拆下旧的ECU,固定好新的ECU,插上所有的线束插头(注意线束不能损坏和腐蚀,插头应接触良好)对角线拧紧固定螺钉;起动发动机,红色制动灯和ABS灯应显示系统正常。3)制动压力调节器的检修制动压力调节器可能会出现电磁阀线圈不良、阀门泄漏等故障。检测电磁阀线圈的电阻,如果电阻值无穷大或过小等,均说明其电磁阀有故障;将制动压力调节器电磁阀加上其工作电压,看阀能否正常动作,如果不能正常动作,则应更换制动压力调节器;如果怀疑是制动压力调节器有问题,则应在制动压力调节器内无高压制动液时,拆下调节器进一步检查。五、典型故障案例分析1、故障案例一:故障现象:在日常维护保养过程中,维修人员发现一辆雷克萨斯05款RX300多功能车仪表板上ABS故障灯闪烁。故障分析:从工具室借来雷克萨斯专用诊断仪IT-,检测结果显示“左前轮速传感器故障”。清除故障码后,ABS灯不再闪亮,但车辆开出公司后不久,车主给服务顾问打来电话,说故障灯又开始闪烁。于是服务顾问劝车主返回公司,维修人员再次借来专用诊断仪读取故障码,仍然显示是“左前轮速传感器故障”。于是便拆下左前轮转速传感器进行检查。目视发现传感器表面比较破旧且布满泥污,信号齿圈表面也脏污不堪。于是拆下齿圈和传感器一同进行仔细清洗,吹干后装复。清除故障码后由车间检验员出去试车,二十分钟后返回。根据反映ABS故障灯不再点亮,车主再次开车离开后也未反映有再次点亮的情况,由此故障排除。2、故障案例二: 故障现象:一辆桑塔纳2000GSI轿车,行驶8万公里,该车装备MK20 I型防抱死制动系统,此车ABS故障灯亮起,车主开到修理厂进行检修。 故障分析:首先,用元征电眼睛故障诊断仪读取故障码,对ABS系统进行检测,显示“00290”,为左后轮转速传感器G46故障。一般情况下,以下三种情况将会导致ABS系统出现这种故障:1)当车速超过10 km/h时,没有转速信号传递给ABS控制单元。2)当车速大于40 km/h时候,转速信号超出公差值。3)传感器存在可识别的断路或对正极、接地短路故障。根据经验,应该重点检查以下项目:1)轮速传感器与ABS控制单元的线路连接情况。2)轮速传感器和齿圈的安装间隙、安装位置以及受灰尘或杂质污染的情况。3)车轮轴承间隙是否过大。4)传感器本身故障。在该车故障排除过程中,首先并没有急于检查轮速数据。将发动机怠速运转,选择阅读数据块功能,进入 001 显示组,用举升机将车升起来,观察各显示数据。车轮静止时候,各显示区均显示0 km/h。用手转动左后轮,第3显示区显示9 km/h。又转动别的车轮,观察相对应的显示区,发现基本一致。放下车辆,用故障诊断仪清除故障码。ABS警示灯随之熄灭,路试一切正常。用诊断仪读取测量数据块功能,进入显示组002,观察第3显示区左后轮速度。无论在加速、减速、制动、低速还是高速时,其数值都与其他3个轮速基本一致。ABS警示灯没有亮起,制动时也能感觉到ABS系统在起作用,故障也没有出现。因为再没有发现故障,就准备让车主将车接走。就在这时,故障再次出现了。在车辆怠速着车静止不动的时候,故障警示灯亮了。调码发现又产生左后轮的偶发性故障码。根据该车检查状况,只有一种可能,那就是左后轮转速传感器与ABS控制单元之间产生瞬间短路或断路。根据电路图进行检查时,发现ABS控制单元的25针插头第10针有轻微腐蚀。清理修复插头之后,清除故障码。车主驾车2000多公里也没有出现原来的故障。经询问车主得知,清洗车辆的时候,经常用高压水冲洗发动机舱,由于高压水溅入ABS控制单元的连接点,25针插头第10针被腐蚀,导致有瞬间开路的情况发生。此故障属于软性故障,故障出现的机率具有很大的随机性,一般用万用表不易测出,也只有在故障出现时,才能发现故障原因,找到病根,对症下药,将故障排除。3、故障案例三:故障现象:上海别克(BUICK)君威轿车仪表板上的ABS故障指示灯点亮,ABS系统不起作用,制动抱死。故障检修:由于行驶中仪表板上的ABS故障指示灯点亮,说明ABS电脑记录有故障代码。根据别克维修手册中提供的故障代码读取方法,人工调取故障代码41。查故障代码表得知:故障代码41表示右前电磁阀线路开路。为确认是否电磁阀线路的故障,用万用表测量ABS总泵的电磁阀线路,测量时发现有一根线与其它任何一根线都不相通(正常电磁阀引脚之间是相通的),由此可以判断这根线便是故障代码41所指的开路线。为查出具体开路部位,采取以下方法:拆下ABS总泵(位于发动机室左侧前端);分解ABS总泵,从其他底部拆开便看到四个电磁阀(分解时要注意不要损坏密封圈),打开ABS总泵后,便看到有一根线端已明显断开,此即故障所在,用一根比较小的电线把电线的开路端焊接起来,然后用万用表的欧姆档原来开路的线与其他各线是否相通,结果相通,然后按照规定顺序对ABS系统进行空气排除(注意:一定要按规定放气顺序对各轮进行放气,否则空气无法排除干净,会影响ABS系统的工作效果)。试车,ABS系统功能恢复正常,故障排除。案例总结:一般情况下,解决ABS灯常亮的故障,可以按如下方法进行逐步排除:清除故障码清洗或更换有故障的转速传感器、清洗齿圈(用化油器清洗剂清洗)调整齿圈间隙更换刹车油检查ABS控制线束,必要时更换检查ABS控制器,必要时予以更换。结束语首先,要衷心感谢我的指导老师刘阳老师。在论文的写作过程中,刘老师在各个环节上进行了耐心的指导。刘老师严谨的治学态度,是我今后学习的榜样,并将一直激励着我。这次论文写作,使我了解很多ABS等相关的知识,锻炼了自己的写作水平;通过与同组论文同学的讨论学习,促进了互相的友谊;通过与老师的交流,对论文的修改使我了解到目前自己的不足,在今后的学习工作过程中要继续锻炼。再次感谢学院对我培养以及学院老师对我的大力帮助和指导。参考文献1 金加龙,宋麓明,等汽车底盘构造与维修(第二版)北京:电子工业大学出版社,20092 解福泉,周建平汽车典型电控系统构造与维修北京:人民交通出版社,20093 王世铮,覃娅娟汽车故障诊断技术北京理工大学出版社,20094 蒲永峰汽车检测、诊断与维修清华大学出版社,20085 ABS防抱死刹车系统百度百科6 慧聪网/html/001/001/011/44868.htm1 防抱死制动系统概述1.1 ABS的功能 汽车ABS在高速制动时用来防止车轮抱死,ABS是英文Anti-lock Brake Syetem的缩写,全文的意思是防抱死制动系统,简称ABS。凡驾驶过汽车的人都有这样的经历:在积水的柏油路上或在冰雪路面紧急制动时,汽车轻者会发生侧滑,严重时会掉头、甩尾,甚至产生剧烈旋转。制动力过大,将使车轮抱死,汽车方向失去控制后,若是弯道就有可能从路边滑出或闯入对面车道,即使不是弯道也无法躲避障碍物,产生这些危险状况的原因在于汽车的车轮在制动过程中产生抱死现象,此时,车轮相对于路面的运动不再是滚动,而是滑动,路面作用在轮胎上的侧滑摩擦力和纵向制动力变得很小,路面越滑,车轮越容易。总之,汽车制动时车轮如果抱死将产生以下不良影响:方向失去控制,出现侧滑、甩尾,甚至翻车;制动效率下降,延长了制动距离;轮胎过度磨损,产生“小平面”,甚至爆胎。ABS防抱死制动装置就是为了防止上述缺陷的发生而研制的装置,它有以下几点好处:增加制动稳定性,防止方向失控、侧滑和甩尾;提高制动效率,缩短制动距离(松软的沙石路面除外);减少轮胎磨损,防止爆胎。现代轿车的ABS由输入传感器、控制电脑、输出调制器及连接线等组成。输入传感器通常包括死个车轮的轮速信号、刹车信号,个别车型还有减速度信号、手刹车或车油面信号。ABS的第一个优点是增加了汽车制动时候的稳定性。汽车制动时,四个轮子上的制动力是不一样的,如果汽车的前轮抱死,驾驶员就无法控制汽车的行驶方向,这是非常危险的;倘若汽车的后轮先抱死,则会出现侧滑、甩尾,甚至使汽车整个掉头等严重事故。ABS可以防止四个轮子制动时被完全抱死,提高了汽车行驶的稳定性。汽车生产厂家的研究数据表明,装有ABS的车辆,可使因车论侧滑引起的事故比例下降8%左右。ABS的第二个优点是能缩短制动距离。这是因为在同样紧急制动的情况下,ABS可以将滑移率(汽车华东距离与行驶的比)控制在20%左右,即可获得最大的纵向制动力的结果。ABS的第三个优点是改善了轮胎的磨损状况,防止爆胎。事实上,车轮抱死会造成轮胎小平面磨损,轮胎面损耗会不均匀,使轮胎磨损消耗费增加,严重时将无法继续使用。因此,装有ABS具有一定的经济效益和安全保障。另外,ABS使用方便,工作可靠。ABS的使用与普通制动系统的使用几乎没有区别,紧急制动时只有把脚用力踏在制动踏板上,ABS就会根据情况进入工作状态,即使雨雪路滑,ABS也会使制动状态保持在最佳点。ABS利用电脑控制车轮制动力,可以充分发挥制动器的效能,提高制动减速度和缩短制动距离,并能有效地提高车辆制动的稳定性,防止车辆侧滑和甩尾,减少车祸事故的发生,因此被认为是当前提高汽车行驶安全性的有效措施。目前ABS已经在国内外中高级轿和客车上得到了广泛使用。1.2 防抱死制动系统的发展历史ABS装置最早应用在飞机和火车上,而在汽车上的应用比较晚。铁路机车在制动时如果制动强度过大,车轮就会很容易抱死在平滑的轨道上滑行。由于车轮和轨道的摩擦,就会在车轮外圆上磨出一些小平面,小平面产生后,车轮就不能平稳地行驶,产生噪声和挣动。1908年英国工程师J. E. Francis提出了“铁路车辆车轮抱死滑动控制器”理论,但却无法将它实用化。接下来的30年中,包括Karl Wessel的“刹车力控制器”、Werner Mhl的“液压刹车安全装置”与Richard Trappe的“车轮抱死防止器”等尝试都宣告失败。在1941年出版的汽车科技手册中写到:“到现在为止,任何通过机械装置防止车轮抱死危险的尝试皆尚未成功,当这项装置成功的那一天,即是交通安全史上的一个重要里程碑”,可惜该书的作者恐怕没想到这一天竟还要再等30年之久。当时开发刹车防抱死装置的技术瓶颈是什么?首先该装置需要一套系统实时监测轮胎速度变化量并立即通过液压系统调整刹车压力大小,在那个没有集成电路与计算机的年代,没有任何机械装置能够达成如此敏捷的反应!等到ABS系统的诞生露出一线曙光时,已经是半导体技术有了初步规模的1960年代早期。精于汽车电子系统的德国公司Bosch(博世)研发ABS系统的起源要追溯到1936年,当年Bosch申请“机动车辆防止刹车抱死装置”的专利。1964年(也是集成电路诞生的一年)Bosch公司再度开始ABS的研发计划,最后有了“通过电子装置控制来防止车轮抱死是可行的”结论,这是ABS(Antilock Braking System)名词在历史上第一次出现!世界上第一具ABS原型机于1966年出现,向世人证明“缩短刹车距离”并非不可能完成的任务。因为投入的资金过于庞大,ABS初期的应用仅限于铁路车辆或航空器。Teldix GmbH公司从1970年和奔驰车厂合作开发出第一具用于道路车辆的原型机ABS 1, 该系统已具备量产基础,但可靠性不足,而且控制单元内的组件超过1000个,不但成本过高也很容易发生故障。1973年Bosch公司购得50的Teldix GmbH公司股权及ABS领域的研发成果,1975年AEG、Teldix与Bosch达成协议,将ABS系统的开发计划完全委托Bosch公司整合执行。“ABS 2”在3年的努力后诞生!有别于ABS 1采用模拟式电子组件, ABS 2系统完全以数字式组件进行设计,不但控制单元内组件数目从1000个锐减到140个,而且有造价降低、可靠性大幅提升与运算速度明显加快的三大优势。两家德国车厂奔驰与宝马于1978年底决定将ABS 2这项高科技系统装置在S级及7系列车款上。在诞生的前3年中,ABS系统都苦于成本过于高昂而无法开拓市场。从1978到1980年底,Bosch公司总共才售出24000套ABS系统。所幸第二年即成长到76000套。受到市场上的正面响应,Bosch开始TCS循迹控制系统的研发计划。1983年推出的ABS 2S系统重量由5.5公斤减轻到4.3公斤,控制组件也减少到70个。到了1985年代中期,全球新出厂车辆安装ABS系统的比例首次超过1,通用车厂也决定把ABS列为旗下主力雪佛兰车系的标准配备。图1-1 BOSCH防抱死制动系统1.3 防抱死制动系统的发展趋势(1)ABS本身控制技术的提高现代制动防抱死装置多是电子计算机控制,这也反映了现代汽车制动系向电子化方向发展。基于滑移率的控制算法容易实现连续控制,且有十分明确的理论加以指导,但目前制约其发展的瓶颈主要是实现的成本问题。随着体积更小、价格更便宜、可靠性更高的车速传感器的出现,ABS系统中增加车速传感器成为可能,确定车轮滑移率将变得准确而快速。全电制动控制系统BBW (Brake-By-Wire)是未来制动控制系统的发展方向之一。它不同于传统的制动系统,其传递的是电,而不是液压油或压缩空气,可以省略许多管路和传感器,缩短制动反应时间,维护简单,易于改进,为未来的车辆智能控制提供条件。但是,它还有不少问题需要解决,如驱动能源问题,控制系统失效处理,抗干扰处理等。目前电制动系统首先用在混合动力制动系统车辆上,采用液压制动和电制动两种制动系统。(2)防滑控制系统防滑控制系统ASR (Acceleration Slip Regulation)或称为牵引力控制系统TCS(Traction Control System)是驱动时防止车轮打滑,使车轮获得最大限度的驱动力,并具有行驶稳定性,减少轮胎磨损和发动机的功耗,增加有效的驱动牵引力。防滑控制系统包括两部分:制动防滑与发动机牵引力控制。制动部分是当驱动轮 (后轮)在低附着系数路面工作时,由于驱动力过大,则产生打滑,当ASR制动部分工作时,通过传感器将非驱动轮及驱动轮的轮速信号采集到控制器 中,控制器根据轮速信号计算出驱动车轮滑移率及车轮减、加速度,当滑移率或减、加速度超过某一设定阀值时,则控制器打开开关阀,气压由储气筒直接进入 制动气室进行制动,由于三通单向阀的作用气压只能进入打滑驱动轮的制动气 室,在低附着系数路面上制动时,轮速对压力十分敏感,压力稍稍过大,车轮就会抱死。为此利用ABS电磁阀对制动压力进行精细的调节,即用小步长增压或减压,以达到最佳的车轮滑移的效果 既可以得到最大驱动力,也可保持行驶的稳定性。(3)电子控制制动系统由于ass在功能方面存在许多缺陷,如气压系统的滞后,主车与接车制动相容性问题等。为改善这些,出现了电子制动控制系统EBS (Electronics Break System)它是将气压传动改为电线传动,缩短了制动响应时间。最重要的特点是各个车轮上制动力可以独立控制。控制强度则由司机踏板位移信号的大小来决定,由压力调节阀、气压传感器及控制器构成闭环的连续压力控制,这样可以在外环形成一个控制回路,来实现各种控制功能,如制动力分布控制、减速控制、牵引车与挂车处祸合力控制等。(4)车辆动力学控制系统车辆动力学控制系统VDC (Vehicle Dynamics Control)是在ABS的基础上通过测量方向盘转角、横摆角速度和侧向加速度对车辆的运动状态进行控制。VDC系统根据转向角、油门、制动压力,通过观测器决定出车辆应具有的名义运动状态。同时由轮速、横摆角速度和侧向加速度传感器测出车辆的实际运动状态。名义状态与实际状态的差值即为控制的状态变量,控制的目的就是使这种差值达到最小,实现的方法则是利用车轮滑移率特性。车辆动力学控制系统目的是改善车辆操纵的稳定性,它可以在车辆运动状态处于危险状态下自动进行控制。其主要作用就是通过控制车辆的横向运动状态,使车辆处于稳定的运动状态,使人能够更容易地操纵车辆。(5)控制系统总线技术随着汽车技术科技含量的不断增加,必然造成庞大的布线系统。因此,需要采用总线结构将各个系统联系起来,实现数据和资源信息实时共享,并可以减少传感器数量,从而降低整车成本,朝着系统集成化的方向发展。目前多使用CAN控制器局域网络(Controller Area Network)用于汽车内部测量与执行部件之间的数据通信协议。1.4 国内ABS系统研究的理论状态和具有代表的ABS产品公司我国ABS 的研究开始于80 年代初。从事ABS研制工作的单位和企业很多,诸如东风汽车公司、重庆公路研究所、西安公路学院、清华大学、吉林大学、北京理工大学、上海汽车制动有限公司和山东重汽集团等。具有代表性的有以下几个。清华大学汽车安全与节能国家重点实验室有宋健等多名博导、教授,有很强的科技实力,他们还配套有一批先进的仪器设备,如汽车力学参数综合试验台、汽车弹射式碰撞试验台及翻转试验台、模拟人及标定试验台、Kodak 高速图像运动分析系统、电液振动台、直流电力测功机、发动机排放分析仪、发动机电控系统开发装置及工况模拟器、计算机工作站及ADAMS、IDEAS 软件、非接触式速度仪、噪声测试系统、转鼓试验台、电动车蓄电池试验台、电机及其控制系统试验台等。该实验室针对ABS 做了多方面的研究,其中,在ABS 控制量、轮速信号抗干扰处理、轮速信号异点剔除、防抱死电磁阀动作响应研究等方面的研究处于国内领先地位。吉林大学汽车动态模拟国家重点实验室以郭孔辉院士为代表的研究人员致力于汽车操纵稳定性、汽车操纵动力学、汽车轮胎模型、汽车轮胎稳态和非稳态侧偏特性的研究,在轮胎力学模型、汽车操纵稳定性以及人- 车闭环操纵运动仿真等方面的研究成果均达到世界先进水平。华南理工交通学院汽车系以吴浩佳教授为代表从事汽车安全与电子技术及汽车结构设计计算的研究,在ABS 技术方面有独到之处,能够建立制动压力函数,通过车轮地面制动力和整车动力学方程计算出汽车制动的平均减速度和车速;还可以通过轮缸等效压力函数计算防抱死制动时的滑移率。另外,在滑移率和附着系数之间的关系、汽车整车技术条件和试验方法方面也有独到见解。济南程军电子科技公司以ABS 专家程军为代表的济南程军电子科技公司对ABS 控制算法研究颇深,著有汽车防抱死制动系统的理论与实践等专著几本,专门讲述ABS 控制算法,是国内ABS 开发人员的必备资料之一。另外,他们在基于MAT2LAB 仿真环境实现防抱死控制逻辑、基于VB 开发环境进行车辆操纵仿真和车辆动力学控制的模拟研究等方面也颇有研究。重庆聚能公司产品包括汽车、摩托车系列JN111FB 气制动电子式单通道、JN144FB 气制动电子式四通道和JN244FB 液压电子式四通道等类型ABS 装置及其相关零部件30 多个品种,其ABS 产品已通过国家汽车质量监督检测中心和国家客车质量监督检测中心的认定,获得国家实用新技术专利,并正式被列为国家火炬项目计划。西安博华公司主要产品是适用于大中型客车和货车的气压四通道ABS 和适用中型面包车的液压三通道ABS 及其相关零部件。其中BH1203 -FB 型ABS 和BH1101 - FB 型ABS 已通过陕西省科委科技成果鉴定和陕西省机械工业局新产品鉴定,认为该项技术已达到国内领先水平。山东重汽集团引进国际先进技术进行的研究也已取得了一些进展。重庆公路研究所研制的适用于中型汽车的气制动FKX - ACI 型ABS 装置已通过国家级技术鉴定,但各种制动情况的适应性还有待提高。清华大学研制的适用于中型客车的气制动ABS由于资源价格和性能上的优势,陶瓷材料的应用将迅速扩展;金刚石和CBN 超硬材料的应用将进一步扩大;新刀具材料的研制周期会越来越短,新品种新牌号的推出也将越来越快。人们所希望的既有高速钢、硬质合金的强度和韧性,又有超硬材料的硬度和耐磨性的新刀具材料也完全有可能出现。本文主要讲述以80C196KC单片机为核心,完成了信号输入回路、输出驱动回路、电源部分及故障诊断等硬件电路设计,对轮速传感器、电磁阀等的故障检测电路进行了设计。2防抱死制动系统基本原理2.1 制动时汽车的运动2.1.1 制动时汽车受力分析汽车在制动的过程中主要受到地面给汽车的作用力、风的阻力和自身重力的作用。地面对汽车的作用力又分为:作用在车轮上垂直于地面的支承力和作用在车轮上平行于地面的力。汽车在直线行驶并受横向外界干扰力作用和汽车转弯时所受到地面给汽车的力如图 2-1所示。其中Fx为地面作用在每个车轮上的地面制动力,他的大小决定于路面的纵向附着系数和车轮所受的载荷。所有车轮上所受地面制动力的总和作为地面给汽车的总的地面制动力,他是使汽车在制动时减速并停止的主要作用力。Fy为地面作用在每个车轮上的侧滑摩擦力,侧滑摩擦力的大小取决于侧向附着系数和车轮所受的载荷,当车轮抱死时,侧滑摩擦力将变得很小,几乎为零。汽车直线制动时,若受到横向干扰力的作用,如横向风力或路面不平,汽车将产生侧滑摩擦力来保持汽车的直线行驶方向,如图2-1(a)图2-1 汽车直线和转弯制动时的平面受力简图所示。若汽车在转弯时制动或在制动时转弯,也将产生侧滑摩擦力使汽车能够转向,如图2-1 (b)所示。地面制动力决定制动距离的长短,侧滑摩擦力则决定了汽车制动时的方向稳定性。这里将作用在前轮上的侧滑摩擦力称为转弯力,将作用在后轮上的侧滑摩擦力称为侧向力。转弯力和汽车的方向操纵性有关,它保证了汽车能够按照驾驶员的意愿转向;侧向力和汽车的方向稳定性有关,它保证了汽车的行进方向。转弯力越大,汽车的方向操纵性越好;侧向力越大,汽车的方向稳定性越好。如上所述,施加适当的制动,能够有效地使汽车停下。制动强度过大,是汽车发生各种危险运动状况的主要原因。因此,汽车行驶时,要根据冰路、雪路、砂石路、坏路、水湿路、干路、直路、弯曲路等道路条件,根据汽车速度、方向转角等行驶条件进行制动操作,必须时常注意不能让车轮完全抱死。2.1.2 车轮抱死时汽车运动情况车轮抱死时汽车所受到的侧滑摩擦力将会变的很小,这将使汽车制动时保持方向操纵性和方向稳定性的转弯力和侧向力变的很小,使汽车在制动时出现一些危险的运动情况。对ABS系统来说,就是要防止这些危险情况的出现。下面从汽车在一种路面上直线和转弯制动两方面简单讨论一下当车轮抱死时汽车的运动情况。(1)汽车在一种路面上直线运动制动车轮抱死时可能出现的运动情况如图2-2所示。图2-2 (a)为只有前轮抱死时,由于前轮的转弯力基本为零,无法进行正常的转向操作。为制动时前轮全部抱死而后轮不抱死汽车的运动情况示意,当前轮抱死时转弯力为零,驾驶员无法控制汽车的方向使汽车转向来避让前方的障碍物,这时由于汽车后轮不抱死,所以汽车仍具有侧向力来维持方向稳定性。图2-2 (b)为只有后轮抱死时,后轮的侧向力接近于零,汽车仍具有方向操纵性,但会因后轮抱死而失去方向稳定性使汽车侧滑。汽车不能保持原来的行驶方向,由于离心力和前轮转向力的作用,汽车将一面旋转一面沿曲线行驶(这种运动叫外旋转)。图2-2 (c)为前后车轮全部抱死时时转弯力和侧向力都为零,这种状态很不稳定,路面不均匀、左右轮地面制动力不相等时,即使对汽车施加很小的偏转力矩,汽车就会产生不规则运动而处于危险状态,在不规则旋转的过程中将制动释放,汽车就会沿着瞬时行驶方向急速驶出,这也是很危险的。(2)汽车在一种路面上转弯制动车轮抱死时可能出现的运动情况如图 2-3所示。所有这些运动情况若在制动时出现,都是极其危险的。从上面对出现这些危险运动情况的简单分析可以看出,制动时车轮抱死导致汽车出现各种危险运动情况,实质上是汽车因失去相应的维持本身方向稳定性方向操纵性的侧滑摩擦力而使汽车出现这些运动情况,即车轮抱死导致汽车的侧滑摩擦力为零。车轮的抱死程度和汽车的地面制动力及汽车的侧滑摩擦力之间存在一定的关系,ABS之所以能防止汽车制动时出现危险的运动情况,就是根据这个关系来调整车轮的运动状态,以避免侧滑摩擦力为零。图2-2 汽车直线制动车轮抱死时的运动情况图2-3 汽车转弯制动车轮抱死时的运动情况2.2滑移率定义通常,汽车在制动过程中存在着两种阻力:一种阻力是制动器摩擦片与制动鼓或制动盘之间产生的摩擦阻力,这种阻力称为制动系统的阻力,由于它提供制动时的制动力,因此也称为制动系制动力;另一种阻力是轮胎与道路表面之间产生的摩擦阻力,也称为地面制动力。地面对轮胎切向反作用力的极限值称为轮胎- 道路附着力,大小等于地面对轮胎的法向反作用力与轮胎- 道路附着系数的乘积。如果制动系制动力小于轮胎- 道路附着力,则汽车制动时会保持稳定状态,反之,如果制动系制动力大于轮胎- 道路附着力,则汽车制动时会出现车轮抱死和滑移。地面制动力受地面附着系数的制约。当制动器产生的制动系制动力增大到一定值(大于附着力)时,汽车轮胎将在地面上出现滑移。汽车的实际车速与车轮滚动的圆周速度之间的差异称为车轮的滑移率。滑移率S的定义式为: -(2-3) 式中:S 滑移率;Vt 汽车的理论速度(车轮中心的速度) ; 汽车车轮的角速度;r 汽车车轮的滚动半径。由上式可知:当车轮中心的速度(即汽车的实际车速) Vt 等于车轮的角速度和车轮滚动半径r 乘积时,滑移率为零( S = 0) ,车轮为纯滚动;当 = 0时,S = 100 % ,车轮完全抱死而作纯滑动;当0 S 100 %时,车轮既滚动又滑动。2.3 滑移率与附着系数的关系图2-4 给出车轮与路面纵向附着系数和横向附着系数随滑移率变化的典型曲线。当轮胎纯滚动时,纵向附着系数为零;当滑移率为15 %30 %时,纵向附着数达到峰值;当滑移率继续增大,纵向附着系数持续下降,直到车轮抱死( S = 100 %) ,纵向附着系数降到一个较低值。另外,随着滑移率增大,横向附着系数急剧下降,当车轮抱死时,横向附着系数几乎为零。从图1 可以看出,如果能将车轮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论