




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . . .活性污泥膨胀、上浮原因及控制措施一、活性污泥系统中曝气机的速度控制1、曝气过程被控对象模型及处理曝气机速度与溶解氧(DO)浓度之关系:溶解氧(DO)的形成是非线性的,瞬间完成的;而氧的转移是无源的,可用双膜理论来解释(见图1)。1.1曝气机垂直提升式E型叶轮表面曝气机的充氧量、叶轮直径与线速度的关系有如下公式:Qcm=0.37v0.28D1.88K(1)式中Qcm标准条件下的充氧量,kg/hv 速度,m/sD 叶轮直径,mK 池型系数(对方型池,K=0.64)1.2 氧的转移氧气转移速率取决于下列各因素:气相中氧分压梯度;液相中氧的浓度梯度;气液相间的接触时间和接触面积;水温;污水的性质以及水流的紊流程度等。当混合液中氧的浓度为零时,由于具有最大的推动力,因此氧的转移率最大。在一定条件下,氧的转移速率应等于活性污泥微生物的需氧速率:dC/dt=Kla(Cs-C)(2)式中 C液相中溶解氧浓度,mg/L Cs界面处的溶解氧浓度,mg/L Kla氧总转移系数,L/h1.3 溶解氧(DO)检测常用的DO连续测定方法是隔膜电极法。其隔膜采用聚四氟乙烯纤维、聚乙烯等组成,用铂、金作正电极,铝、铅作负电极,电解液用氯化钾等溶液。当把这种电极浸入测定水中,连通电流测定回路,则产生电流,其电流大小与水中通过隔膜的DO浓度成比例。根据DO仪的测定原理及电化学方程式分析有:DOnt=DOst+rcm/=(e-et)(3)式中DOntt时刻DO的实测量值,mg/LDOstt时刻水样中实际DO浓度,mg/Lrcm实际OUR值,mg/(Lmin) DO仪氧电极响应速度的参数,min-1,在高浓度时 =9.2min-1可见,DO检测是非线性,具有滞后特性。综上所述,可构成曝气机速度控制系统方框图,见图2。2、 曝气机转速的模糊控制 模糊控制运用模糊逻辑进行直觉推理。它不需要对象的精确数学模型,适合于高度非线性、扰动因素大、纯滞后、时变特性等对象的自动控制。实践表明,与传统的DDC和PID调节器相比,模糊控制器(FLC)有更快的响应和更小的超调,对被控系统参数的变化不敏感,能克服线性的影响。在此基础上发展的专家模糊控制器(EFC)(见图3),把人的经验知识和求解控制问题的启发式规则、手续进行模型化,强调知识的多层次及分类的需要。EFC在保持FLC优点的同时,丰富了适用于FLC的知识结构及内容,使其更具灵活性。对于曝气机转速来说,其任务是将进水水质水量变化引起的DO改变尽快地控制在允许的范围之内,且需有一定的鲁棒性以适应废水处理过程因素变化的需要。因此,曝气机转速EFC应具备这样的控制思想:DO浓度偏离较大时,采取较大的控制量输出(转速变化较高),以体现纠偏迅速;DO浓度偏离较小时,采取较慎微的控制量输出,以减小过调并提高对e和的分辩率,提高调节精度。其模糊查询表如下:若|c1en|A 则粗调(1)|c1en|B|c1en-1|则中调(2) |c1en|C|c1en-1|则细调(3)微调 (4)上表中,优先级依次递减。其中ABC为经验值,en为当前采样DO浓度偏离量,en-1为前一次采样偏离量。为便于实际应用,减少EFC的参数,对上述规则进一步简化。2.1 调节策略识别规则IF |c1en|6C THEN L=1(粗调)IF |c1en|3C|c1en-1| L=3 (中调)IF |c1en|C|c1en-1| L=2 (细调) L1=1 (微调)上式中,优先级一次递减。 2.2 控制规则和查询表IF E and EC THEN L (调节变量)IF L and U THEN Y其中E、EC、L、U、Y分别为DO浓度偏离量、偏离变化量、调节变量、调节策略、控制器输出的模糊量。输出值Y经过逆量化后转化成实际输出量作为曝气机转速给定,通过曝气机,改变充氧量,实施对废水处理系统中DO浓度的控制。二、活性污泥污水处理工艺中泡沫的形成与控制活性污泥曝气池中严重的泡沫现象是一种常见问题,主要是由于Nocardioform actinomycetes和Microthrix parvicella菌属的异样生长,其比生长速率高于菌胶团絮凝体形成菌的比生长速率造成的。Nocardioform actinomycetes和Microthrix parvicella菌属有疏水性极强的细胞表面,迁移并停留在气泡表面,因而使气泡稳定。微生物细胞表面的疏水性(CSH)、污泥停留时间(SRT)、pH值、溶解氧(DO)等是丝状菌生长的重要因素。因此,发泡现象也与气水界面的疏水性有机化合物的浓度有关控制泡沫的方法主要有喷洒水、投加化学药剂、降低细胞平均停留时间、调节污水pH值、增设生物选择器、采用连续填料反应器等。 1、 泡沫的形成活性污泥工艺中,泡沫的形成一般有以下几种形式,主要包括工艺运行初始时期形成泡沫、反硝化作用起泡、表面活性剂起泡以及生物泡沫等。生物泡沫粘度大,呈黄褐色,具有稳定、持续、较难控制的特点。1.1 工艺运行初期形成泡沫曝气池开始运转时,特定表面活性剂对有机物的部分降解作用形成泡沫,并使泡沫迅速增长。这些泡沫一般呈白色且质轻,当活性污泥达到成熟时消失。1.2 反硝化作用起泡由于在二沉池或曝气不足的地方会发生反硝化作用,使微小的氮气气泡释放出来,从而使污泥的密度减小,有利于其上浮,产生泡沫现象。这种现象在二次沉淀池中表现明显,且产生的悬浮泡沫通常不稳定。1.3表面活性剂起泡污水中的表面活性剂和淀粉、蛋白质、油脂等表面活性物质在分子结构上都表现为含有极性非极性基团即所谓双亲分子,在曝气的条件下,非极性基团一端伸入气泡内,而极性基团选择地被亲水物质所吸附,这样亲水性物质的表面被转化成疏水性物质而粘附在气泡水膜上,随气泡一起上浮至水面。各种悬浮物质若混入表面活性剂等产生的泡中,这些物质单独存在并不能发泡,但是可使泡沫稳定。如造纸工业中的微细纸浆,食品工业中的纤维质等。另外,如氯化钠、硫酸钠、硫酸铝等盐类的水溶液,单独存在几乎不产生泡沫,但也有助于泡沫的稳定,使泡沫难以消失,如图1、2、3所示。 图1 纯水中的气泡 图2 水中混入表面悬浮物图3 水中混入表面活性剂1.4生物泡沫目前,普遍认为生物泡沫形成的主要原因是:在各种因素影响下,造成丝状菌和放线菌等微生物的异样生长,丝状菌的比生长速率高于了菌胶团细菌,又由于丝状菌的比表面积较大,因此,丝状菌在取得污水中BOD5物质和氧化BOD5物质所需要的氧气方面都比菌胶团细菌有利得多,结果曝气池中丝状菌成为优势菌种而大量增值,导致生物泡沫的产生。再加上这些微生物大都呈丝状或枝状,易形成网,能捕扫微粒和气泡等,并浮到水面。被丝网包围的气泡,增加了其表面的张力,使气泡不易破碎,泡沫更加稳定。另外,曝气气泡产生的气浮作用是泡沫形成的主要动力因素。与生物泡沫有关的菌属主要有Nocardioform actinomycetes(放线菌)和Microthrix parvicella(丝状菌)等,如图4所示,前者多出现于夏季,后者多出现于冬季。Linda L.Blackall等通过测定Microthrix parvicella等丝状菌的16S rDNA序列,对引起生物泡沫的主要丝状菌进行了分离鉴定和分类,如表1所示。 Microthrix parvicella是生成生物泡沫的最重要菌种,其16S rDNA序列信息证实Microthrix parvicell也是一种放线菌,通过电子显微镜观察,其细胞壁上有革兰氏阳性细菌所具有的典型表面,呈单一均质层;Eikelboom Type0092、Eikelboom Type0411 和Eikelboom Type1863丝状菌革兰氏染色均呈阴性,16S rDNA序列信息表明三者都属于Flexibacter-Cytophaga-Bacteroides;Eikelboom Type0803是一种类Proteobacteria,Williams and Unz认为根据形态学准则很难区别Microthrix parvicell和Eikelboom Type0803,但序列信息表明事实上二者没有任何关系,Eikelboom Type0803与上述各丝状菌都不太相似。D.B.Oerther 等利用低(聚)核苷酸探测技术、杂交培植和抗体着色等方法,对生物泡沫中Gordonia spp.等丝状微生物进行了定量分析。结果表明,Gordonia spp.等菌体的活性和数量水平的增加与整体微生物群落的活性及数量水平有关,在形成生物泡沫过程中,Gordonia spp.等丝状微生物自身的物理性质可能比细胞的代谢活性所起的作用要大。图4Nocardia amarae和Microthrix parvicella丝状菌等微生物细胞表面的疏水性或憎水性(cell surface hydrophobicity, CSH)是形成生物泡沫并使之稳定的重要原因。Helen Stratton(1998)等从生物泡沫中分离出nocardiform及Rhodococcus rhodochrous等菌种,对细胞表面霉菌酸成分(mycolic acid content),表1 与泡沫形成有关的主要菌属序号菌种名称革兰氏性种属和形态1Nocardia amaraeG+放线菌(actinomycete),枝状菌丝 2Nocardia pinesisG+放线菌,松枝状3Rhodococcus sp.G+放线菌,枝状菌丝4Microthrix parvicellaG+丝状菌(filament),无鞘无分枝,丝状5Eikelboom Type0092G-F-C-B门,丝状菌6Eikelboom Type0411G-F-C-B门,丝状菌7Eikelboom Type1863G-F-C-B门,类Proteobacteria,丝状菌8Eikelboom Type0803G-F-C-B门,类Proteobacteria,丝状菌注:F-C-B门表示Flexibacter-Cytophaga-Bacteroides phylum.以及细胞表面疏水性(CSH)与形成稳定生物泡沫能力之间的关系进行了研究,结果表明:霉酸菌成分并不是形成CSH的唯一原因,CSH也不是生成生物泡沫并使之稳定的唯一因素。CSH随着微生物的培养周期,以及其它条件,如生长温度、碳源等的变化而改变;Rhodococcus rhodochrous中霉酸菌成分也会随着培养周期、温度以及碳源等条件的变化而发生改变;nocardiform细胞表面的霉酸菌成分对其CSH的影响不大。D.Mamais(1998)等认为,长链脂肪酸(慢速生物降解COD)和低温环境是脱氮活性污泥系统中Microthrix parvicella生长的主要原因,絮凝体形成菌去除易生物降解COD的过程也不会影响Microthrix parvicella的生长,长链脂肪酸被去除的量(吸附去除)与Microthrix parvicella的生长量成反比关系;污泥停留时间(SRT)、pH值也会影响生物泡沫的产生。长污泥停留时间有利于Microthrix parvicella等丝状菌微生物的生长,这也是延时曝气工艺更容易引起生物泡沫的原因。另外,溶解氧(DO)以及曝气方式等也是生成泡沫的重要影响因素。如表2所示。表2 与优势丝状菌相关的条件产生条件 丝状菌种类 低DOMicrothrix parvicella, S. Natans, 1701低F/MMicrothrix parvicella,0041,0092完全混合式生物反应器H. Hydrossis, Nocardia spp., 021N, 1851,1701腐败性废水/硫化物Beggiatoa, Thiothrix spp., 0914 营养不足S. Natans, Thiothrix spp., 021N; 可能有H. Hydrossis,0041 低pH值fungal bacteria2、 泡沫的控制根据泡沫形成的机理及其影响因素,可采用物理化学和生物的方法对泡沫进行控制。控制泡沫特别是生物泡沫的实质并非消除Microthrix parvicella等细菌的产生,主要途径就是在曝气系统中建立一个不适宜丝状菌异常生长的环境,抑制其在活性污泥中的过度增殖,使丝状菌与絮凝体形成菌保持平衡的比例生长。2.1 物化方法控制泡沫 喷洒水。喷洒的水流或水珠能打碎浮在水面的气泡,以减少泡沫。但不能根本消除泡沫现象,是一种最常用最简便的物理方法。 投加化学药剂。阳离子聚丙烯酰胺(acrylamidebased cationic polymer)是一种常用的消泡剂,把阳离子聚丙烯酰胺投加于二沉池进水管中,其既有抑制Nocardioform actinomycetes生长的作用,又有通过回流污泥进入曝气池消除污水中表面活性剂及表面活性物质极性非极性特点的作用。由于上述两点的存在,新的稳定泡沫难于大量生成,而在水面上的泡沫层由于水面紊动,泡沫受剪力作用不断破碎,表面泡沫水膜由于水分不断蒸发,泡沫不断破碎,泡沫层也逐渐消失。低浓度的H2O2也是一种较常用的泡沫消除剂,在活性污泥中投加当投加低浓度H2O2时,其浓度不足以杀死菌胶团表面伸出的丝状菌,只能氧化部分生物残渣和消除代谢过程产生的毒素,净化菌胶团细菌生长的环境,促进了菌胶团细菌优势生长, 使菌胶团菌和丝状菌的生长达到了新的平衡,从而达到控制生物泡沫的目的,而出水水质并未恶化。H2O2应投加于回流污泥中,投加浓度为2025mg H2O2/(kgMLSS)。 污水中的泡沫是典型的季节性出现的,代谢和动力学的调节并不能很成功的抑制Microthrix parvicella的过度生长和泡沫的产生,经过与氯、阳离子聚丙烯酰胺两种化学药剂相比较,发现除丝状菌聚季铵碱(quaternary ammoniumbased antifilament polymer, AFP)是一种最有效的物理化学方法来抑制Microthrix parvicella的过度增殖,能有效的控制泡沫,并未给出水水质带来变化。另外,如氯、臭氧、聚乙二醇以及氯化铁和铜材酸洗液的混合药剂等均具有较强的氧化性,也可当作消泡剂使用。2.2 生物方法控制泡沫降低细胞平均停留时间是很有效的控制泡沫的方法,实质即利用丝状菌平均世代时间较长于絮凝体形成菌的特点,抑制丝状菌的过度增殖,细胞平均停留时间越短,丝状菌越少,泡沫也越少。 最适宜Nocardia amarae生长的pH值为7.8,最适宜Microthrix parvicella生长的pH值为7.78.0,当pH值从7.0降为5.05.6时,能有效控制这些微生物的过度生长,减少泡沫的形成。降低了曝气的空气输入率,一是能降低曝气池中气提强度,减缓了丝状菌的上浮速度;二是能降低曝气池中的溶解氧浓度,Nocardia amarae是严格的好氧菌,在缺氧或厌氧条件下,不易生长,但Microthrix parvicella却能忍受缺氧状态。再者,降低曝气池的空气输入量也相应的降低了微气泡的生成量,即减少丝状菌和放线菌机体上浮的载体,从而延缓泡沫的形成。 厌氧消化池上清液能抑制Rhodococcus rhodochrous菌属的生长,采用厌氧消化池上清液回流到曝气池的方法,也能控制曝气池表面泡沫的形成。但由于厌氧消化池上清液中含有高浓度好氧底物和氨氮,它们都会影响出水水质,因此应慎用。 生物选择器有好氧选择器和缺氧选择器两种,其目的就是使进入曝气池的污水先于回流污泥在其中充分混合,通过调节F/M、DO等因素,选择性的发展絮凝体形成菌,抑制丝状菌等的过度增殖。在设计选择器时,选择器需要分格设置,一般多采用46格;尽量提高选择器第一格的F/M值,形成F/M梯度;还要控制选择器的水力停留时间,一般为1015分钟。好氧选择器能一定程度地控制Microthrix parvicella,但对Nocardia 菌属无大影响;而缺氧选择器对Nocardia菌属有控制作用,却对Microthrix parvicella无太大作用。 没有证据表明厌氧和缺氧选择器能够绝对成功的控制Microthrix parvicella的扩散和增殖,连续流和序批实验表明,控制Microthrix parvicella 生长的最佳方式就是采用连续填料流反应器,理由有二:一是利用絮凝体形成菌的高吸附能力能够大量去除慢速生物降解COD;二是能避免胶体物质水解后可溶产物的扩散。三、活性污泥絮体中的丝状菌结构分析丝状微生物是一大类菌体相连而形成丝状的微生物的统称,其中包括丝状细菌、丝状真菌、丝状藻类等。荷兰学者Eikelboom将丝状微生物分为29个类型、7个群,并制成了活性污泥丝状微生物检索表。丝状微生物的功能与结构形态密切相关,长丝状形态有利于其在固相上附着生长,保持一定的细胞密度,防止单个细胞状态时被微型动物吞食;细丝状形态的比表面积大,有利于摄取低浓度底物,在底物浓度相对较低的条件下比胶团菌增殖速度快,在底物浓度较高时则比胶团菌增殖速度慢。许多丝状微生物表面具有胶质的鞘,能分泌粘液,粘液层能够保证一定的胞外酶浓度,并减少水流对细胞的冲刷,其中还含有特定的抗体,以防止其他生物附着。丝状微生物种类繁多,对生长环境要求低。其本身生理生长特性很特别:增殖速率快、吸附能力强、耐供氧不足能力以及在低基质浓度条件下的生活能力都很强,因此在废水生物处理生态系统中存活的种类多,数量大。如何使丝状微生物相互聚集,使之在废水处理中达到较好的泥水分离效果,如何确定丝状微生物同其他微生物的相互作用,以及不同丝状微生物的最适需氧量等,都是需要进一步研究的问题。丝状微生物鉴定采用Eikelboom法,镜检观察以下八项特征:是否存在衣鞘;滑行运动 ;真、假分枝;丝状体长度、形状、性质;细胞直径、长度、性质;革兰氏染色反应;纳氏染色反应;有无胞含体(聚-羟基丁酸PHB、硫粒、多聚磷酸盐等)。染色采用石炭酸复红染色法、革兰氏染色法、纳氏染色法和积硫试验法。通过目微尺测定污泥絮体直径,记录各种大小、形状和结构的絮体数量,归纳污泥絮体的主要类型及特征。通过大量观察,寻找丝状微生物种类、浓度与污泥絮体大小、形状、结构的关系。1、 絮体结构形态类型通过大量的观察发现,活性污泥在正常运行和膨胀时呈现不同的结构形态和种类。正常运行时活性污泥结构形态可分为四类,型:致密、细小,看不到丝状菌为骨架的污泥;型:有明显丝状骨架、呈长条形的污泥;型:厚实、具有网状结构的巨型污泥;型:有孔洞结构 的巨型污泥。污泥膨胀时其结构形态可分为两类,型:结构丝状菌 大量 生长、伸长,絮体结构松散;型:非结构丝状菌大量生长,不形成絮体。型污泥在污水厂正常运行的曝气池中所占比例较低,而在二沉池上清液中比例较高,因此它是从良好结构的污泥上脱落下来的,在二沉池随出水流失。正常运行时长条形污泥、网状污泥和孔洞污泥(、型)占很高比例。根据絮体伸出的部分丝状菌,可以判断这些具有良好结构的污泥是以丝状菌为骨架,胶团菌附着于其上而形成的。它们是去除有机物的主要部分。在混合液中可见到其他丝状微生物游离于菌胶团之外,见不到附着生长物,三种样本见到的菌种有:球衣菌、发硫菌、0803型、0581型、硬发菌、链球菌等,但数量都十分少。在不曝气仍保持进水流量,发生了结构丝状菌大量增殖的现象,污泥结构呈松散状(型),SVI达到142 mL/g干污泥;恢复曝气,按正常方式运行一段时间后,污泥结构恢复正常,SVI回落至90mL/g干污泥。而活性污泥小试过程中多次出现污泥膨胀,泥水分离困难(型),SVI高达500mL/g干污泥以上,调节运行方式仍不能控制,镜检发现球衣菌、发硫菌大量增殖,最终通过投加漂白粉杀生剂再经逐步培养才恢复正常。2、微生物鉴定结果根据Eikelboom法对作为污泥良好结构骨架的丝状菌进行鉴定,发现各处取样污泥的结构丝状菌特征一致:丝状体直径1.52m,丝体长200m左右,不运动,略弯,在絮体内扭曲,细胞呈柱状,长0.54m,直径0.71.0m,有鞘,横隔明显,常见分枝,有大量附着生长物,无硫粒,革兰氏染色阴性,纳氏染色可见兰灰色颗粒,呈阳性。Eikelboom1701的特征是:链状圆柱形细胞,被鞘紧裹,丝体长100200m,偶尔超过200m,虽然丝体正常时稍弯,但可有很强的盘绕性,细胞长2.53.5m, 直径0.50.9m,有鞘,有时可见PHB黑色小颗粒,横隔和缩缢明显,偶有假分枝,常有大量附着生长物,无硫粒,革兰氏染色阴性,纳氏染色阳性。3、絮体形成过程许多絮体可以同时具有型、型、 型污泥的多种特征,在絮体中心部分为孔洞结构,向四周伸展的长条形污泥相互搭接形成网状结构,最外侧则可见新伸出的骨架丝状菌。从这种污泥的形态可以推断其形成过程为:结构丝状菌交织生长,胶团菌附着其上形成新生污泥,新生污泥逐渐成熟形成条状、网状污泥,在氧和营养物充足等条件下,网状污泥的胶团菌增粗,网孔逐渐变小形成孔洞状,最后孔洞被填实,而结构丝状菌的伸出为胶团菌提供了新的附着面,包裹形成新的条状污泥,条状污泥相互交织又形成新的网状污泥,重复上述过程,形成更大的污泥絮体。一些污泥能见到成节的形态,大的孔洞结构污泥之间由细的条状污泥连接,有的由丝状微生物连接,这种污泥的形成可能是絮体成长到一定成熟度后,由于内部供氧不足,促进了包埋于其中的结构丝状菌的生长,将絮体撑开导致结构松散形成节状。还有极少量的污泥,可以见到极粗大的丝状骨架,上面附着胶团菌,经多次对比鉴定,这些丝状骨架为死亡累枝虫的杆,由于结构松散,这类污泥易于在二沉池发生漂浮,因此保持原生动物稳定的生长条件可以有效地减少二沉池的污泥上浮。4、丝状微生物与微生态群落的关系胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包附使得结构丝状菌获得更加稳定、良好的生态条件,所以这两大类微生物在活性污泥中形成了特殊的共生体。根据生态学的观点,环境因子对微生物个体的影响首先是影响某些敏感生物,然后通过微生物之间的相互作用逐步传递,最终当影响超过一定限度时引起结构上的波动。正是因为生态系统中生物种类多,并按一定结构组成了微生态群落,环境压力在逐级传递过程中受到消减,所以生态系统具备了一定抗冲击负荷的能力。与纯培养相比,生态系统能通过优势种群的变化维持良好的结构,而纯培养只需轻微刺激就会引起强烈反应,直接破坏其脆弱的结构。这也是保证活性污泥微生态群落稳定性的根本原因。活性污泥微生态群落可做如下描述:活性污泥微生态群落由不同大小的 群落组成,具有良好沉降性和传质性能的菌胶团以结构丝状菌为骨架,胶团菌附着其上而形成,具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌将由附着或游离生长的原生动物和后生动物捕食清除。而少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。有些死亡的原生动物尸体被胶团菌包裹,形成巨型污泥,其内部易产生反硝化作用形成气泡在二沉池漂浮流失。在正常运行条件下,具有结构丝状菌的絮体占优,非结构丝状菌的数量很少,其表面不易为胶团菌附着,彼此存在拮抗关系,这种系统是相对稳定不会轻易改变的。所以在两个污水厂长期运行过程中未发现非结构丝状菌膨胀。而活性污泥小试时各种条件不易控制,屡屡造成非结构丝状菌膨胀,采用改变负荷等办法均不能解决,根据非结构丝状菌与菌胶团的关系,解决的根本办法在于彻底将其清除,故只能采用投加杀生剂的办法使膨胀得到控制,尽管胶团菌也会受到影响,但它们相互聚集成团,只有表面少量细菌受到伤害。曝气不足出现污泥膨胀现象,经镜检为结构丝状菌膨胀,大量结构丝状菌从絮体中伸出,根据结构丝状菌与胶团菌的共生关系,只需创造有利于胶团菌增长的条件就能使污泥沉降性能改善,实践中采用适当排泥增加曝气量的办法,污泥指数很快恢复正常。有关活性污泥中丝状菌作用的资料很少,多将丝状菌描述为在菌胶团内部生长或伸出、游离生长三种情况。根据大量观察发现,活性污泥总能保持一定的宏结构,未见到密实的大颗粒状污泥,微小的菌胶团数量也少。从理论上讲,如果胶团菌附着在一种静止的载体上,将不断增长变厚,直到内部形成厌氧状态发生反硝化作用产生气泡而剥离载体,这样就极易形成大量碎屑的菌胶团,胶团菌自身不可能形成条状、网形结构,只有一种可能性:结构丝状菌与胶团菌构成此消彼长的关系,即结构丝状菌位于胶团菌内部特别是菌胶团较厚时有利于其生长,从而伸长使得包裹在外层的胶团菌不致于过厚形成厌氧状态,其有利条件可能是内部的低氧状态,而一旦结构丝状菌暴露在混合液中时,正常环境条件不利于其生长,待胶团菌包附之后才重新再次生长,如遇供氧不足等条件时,结构丝状菌大量伸出,则发生结构丝状菌引起的污泥膨胀。具有良好结构的活性污泥絮体以结构丝状菌为骨架,胶团菌附着于其上,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流失。活性污泥膨胀分为结构丝状菌膨胀和非结构丝状菌膨胀,前者只需创造有利于胶团菌增长的条件即可解决,后者胶团菌难于附着在非结构丝状菌上生长,只有采取投加杀虫剂的办法毒杀。结构丝状菌与胶团菌在活性污泥中形成共生关系,而非结构丝状菌与胶团菌之间存在着拮抗关系,活性污泥系统的稳定性得益于大环境中微生态群落的相对稳定。四、活性污泥丝状菌膨胀控制污泥膨胀问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。其主要特征是:污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。污泥膨胀是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。而当氮严重缺乏时,也有可产生膨胀现象。因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。非丝状菌膨胀发生情况较少,且危害并不十分严重。影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微生物。它的存在对净化污水起着很好的作用。它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用等都有很重要的意义。事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。引起低负荷膨胀和污泥上浮的最频繁的丝状菌是:微丝菌、0092型、0041型。1、污泥膨胀的原因 进水水质有过量的表面活性物质和油脂类化合物;这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。另外,当进水含油脂量过高时,经过曝气与混合,油脂会附聚在菌胶团表面,使细菌缺氧死亡,导致比重降低而上浮。在进水中表面活性物质和类脂化合物浓度的升高、接种和机械应力也会引起放线菌的增长。机械应力也会(如离心泵)损坏紧密的活性污泥絮凝体并导致微丝菌的过量增长 PH值的波动,当PH值的增加超过一定范围后,絮凝作用下降,引起活性污泥脱絮;过高或过低的pH值会影响活性污泥微生物胞外酶及存在于细胞质和细胞壁里酶的催化作用以及微生物对营养物质的吸收。当连续流曝气反应池内pH4.0或pH11.0时,多数情况下活性污泥中微生物活性受到抑制,或失去活性,甚至死亡,以致发生污泥上浮。用SBR法处理啤酒废水和化工废水的实验结果表明:当进水pH值为2.55.0和10.012.0时,pH值越低(或越高),污泥活性受抑制越严重,上浮污泥量越多。控制低pH值(3.5-7.0)的反应周期内pH值不变,两种废水的活性污泥在pH5.5时就开始出现污泥上浮。另一方面,随着pH值的增加,由于胞外聚合物的电离官能团增加,活性污泥絮凝作用增加(尽管带的负电性增加),但当pH值超过一定范围后,絮凝作用下降。可见,这时的电排斥作用增加,也会造成活性污泥脱絮(悬浮、不絮凝、反絮凝和上浮)。 碱度的偏高,由于进水碱性而调PH值,虽具中和碱性物质,但也产生了盐,盐溶液浓度增大形成渗透压发生突变,就会使其细胞脱水而死或胀破而亡,当活性污泥反应池内碱度超过通常数倍时,多数情况下就会发生污泥上浮; 温度对活性污泥中微生物的影响幅度。一般好氧活性污泥适宜温度范围在15-35,超过45大部分活性污泥就要残废而上浮; 致毒性底物包括CODcr浓度骤然升高、含酚及其衍生物,醇、醛和某些有机酚、硫化物、重金属及卤化物过高等;高底物浓度可与细胞酶活动中心形成稳定的化合物,导致基质不能接近,无法被降解,甚至使细胞中毒死亡。重金属离子进人细胞后主要与酶或蛋白质上的-SH基结合而使之失活或变性。微量的重金属离子还能在细胞内不断积累最终对微生物发生毒害作用(微动作用)。卤化物最常见的是碘和氯,碘不可逆地与菌体蛋白质(或酶)的酪氨酸结合,生成二碘酪氨酸,使菌体失活。氯与水合成次氯酸,其分解产生强氧化剂。而且废水中有机物的突变,使原被驯化好的并能降解有机毒物的微生物减少或消失。 Do(溶解氧)过高,(微生物处于饥饿状态而引起自身氧化进人衰老期,池中溶解氧浓度上升;或者由于污泥活性差,曝气叶轮线速度过高,供氧过多。)短期内污泥活性可能很好,因为新陈代谢快,有机物分解也块,但时间一久,污泥被打得又轻又碎(但天气论),象雪花片似飘满池面,随水流走。这种污泥色浅,活性差,耗氧速率下降,污泥体积和污泥指数增高,处理效果明显降低。Do过低,污泥缺氧呈灰色,若缺氧过久则呈黑色,并常常有小气泡。 反硝化引起的污泥上浮,当废水中总氮或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,若沉淀池发生厌氧,NO3-就会还原为N2,N2被活性污泥絮凝体所吸附,使得活性污泥比重1而上浮; 池底积泥发酵,产生的CO2和H2也会附聚在活性污泥上,使污泥比重降低而上浮。污泥腐化产生CH4、H2S后上浮,首先是一个个小气泡逸出水面,紧接着有黑色污泥上浮。 由于废水运行工况的水温和污泥负荷不能衡定,水质微生物菌种营养源缺铁,会引起菌种兑变成微丝菌,一般称丝状菌繁生而引起活性污泥上浮。微丝菌(Mocrothrixpatvicella)的最佳生长条件是温度在1215,污泥负荷小于0.1kg/(kgd)。它的天然疏水性会引起活性污泥的脱水性差,最高为490mL/g。在温度高于20后、即使污泥负荷是0.2kg/(kgd),M.parvicella也不增值。它打碎成3080m的碎片,成浮渣形式而上浮。 回流量太大引起的污泥上浮。回流量突增,会使气水分离不彻底,曝气池中的气泡带到沉淀区上浮,这种污泥呈颗粒状,颜色不变,上翻的方向是从导流区壁直向沉淀区壁成湍流翻动。2、活性污泥活性抑制与上浮的检测方法 测定污泥的耗氧速率(OUR)和ATP测定活性污泥的耗氧速率(OUR),可判断有无毒物流入、负荷条件和排泥平衡情况。若同时测定三磷酸腺苦(ATP),还可以从处理机能方面对微生物量和活性度进行定量分析。利用指示生物诊断活性污泥状态和性能用显微镜对活性污泥中的微生物进行镜检,其中的原生动物和后生动物(统称为微型动物)相对比细菌个体大,在显微镜下易于观察、鉴别和计数,且对外界环境条件的变化更为敏感,作为指示生物来诊断活性污泥的状态和性能,在工程实践中已有较广泛应用。序号微型动物镜检情况活性污泥状态1钟虫、遁纤虫、累枝虫、聚缩虫、独缩虫等固着型原声动物和轮虫等后生动物大量出现(106个/L)良好(微型动物种类高度多样化,没有占绝对优势数量的微生物)2波豆虫、尾波虫、侧滴虫、屋滴虫、豆形虫、草履虫等快速游泳型原生动物较多恶化(严重恶化时微型动物极少,或被一种/或一组占优势)3漫游虫、斜叶虫、管叶虫等慢速游泳型或匍匐行进的原生动物较多恶化转良好(可观察到微型动物,但个体数比正常污泥害臊,蠕动纤毛类较少)4球衣菌、丝硫菌、微丝菌、放线菌大量出现膨胀、泡沫和浮渣5变形虫和简便虫等肉足类原生动物的个数在混合液中出现104个/mL分散、解体6新态虫、扭头虫、草履虫出现较多溶解氧(DO)不足7轮虫和变形虫大量出现曝气过剩3、污泥膨胀控制方法的演化过程早期控制丝状菌引起的污泥膨胀(简称污泥膨胀)的主要手段是利用丝状菌具有较大的比表面积值,采用药剂杀死丝状菌,或是投加无机或有机混凝剂或助凝剂以增加污泥絮体的比重。这些方法往往无法彻底解决污泥膨胀问题,并且相反地会带来出水水质恶化的不良后果。人们逐渐认识到活性污泥中的菌胶团细菌和丝状菌形成一个共生的微生物生态体系。在这种共生关系中,丝状微生物是不可缺少的重要微生物,其在活性污泥工艺中对于高效、稳定地净化污水起重要作用。逐渐的从简单地杀死丝状菌过渡到利用曝气池中的生长环境,调整丝状菌的比例,控制污泥膨胀的发生,即环境调控阶段。其主要出发点是使曝气池中的生态环境,有利于选择性地发展菌胶团细菌,应用生物竞争的机制抑制丝状菌的过度生长和繁殖,将丝状菌控制在一个合理的范围之内,从而控制污泥膨胀的发生和发展。4、统一的污泥膨胀的理论由于活性污泥是一混合培养系统,活性污泥是菌胶团细菌与丝状菌的共生系统,任何活性污泥系统中都存在着丝状茵。丝状菌也不仅仅是一种菌存在,活性污泥中存在着至少30种可能引起污泥膨胀的丝状菌,污泥膨胀的原因是复杂的。在丝状茵与菌胶团细菌平衡生长时,不会产生膨胀问题。只有当丝状茵生长超过菌胶团细菌时,就会出现膨胀问题。污泥膨胀是由丝状茵和菌胶团细菌生理和生化性质不同所决定的,这两类细菌性质的差异见表表1 丝状菌与菌胶团细菌性质对比表序号性 质菌胶团菌参考值丝状菌参考值1最大生长率(max)高4.4d-1低3.0 d-12基质亲合力(Ks)低64mg/l高40 mg/l3DO亲合力(KDO)低0.1 mg/l高0.027 mg/l4内源代谢率(Kd)高0.012 d-1低0.010 d-15产率系数(Y)高0.153g/g低0.139 g/g6积累能力(A)高 低 7耐饥饿能力及贮存能力高 非常低 活性污泥丝状菌膨胀的原因分为五种类型:即a)基质限制(低基质浓度);b)溶解氧限制(低溶解氧);c)营养物缺乏型高(N、P);d)高、低pH引起; e) 和硫化氢因素(H2S浓度)高等膨胀类型。4.1 广义的Monod方程丝状菌与菌胶团细菌竞争的数学模型,其遵循多种基质限制的广义Monod方程,即Monod-McGee方程:maxS1/(K1+S1)S2/(K2+S2)Sn/(Kn+Sn)(1)其中:max:在饱和浓度中微生物的最大生长速率(d-1);Ki:第I种基质亲和力(mg/l);Si:第I种基质。根据动力学方程(1)可知,基质限制、溶解氧限制和营养物缺乏型的膨胀问题都可用广义Monod方程来加以解释。当氮严重缺乏时并不能归入这一理论,由于缺乏氮,使微生物不能充分利用碳源合成细胞物质,使得过量的碳源被转变为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,从而形成结合水,影响污泥沉降性能,产生了高粘度性的膨胀,其类型不属于丝状菌膨胀。利用Monod方程我们可以简单的求出不同基质浓度条件下,不同菌种的比增值速率。下图为常见的絮体菌与丝状菌的Monod方程曲线,这个曲线可以清晰的表明生物选择器的设计原理。4.2 硫化氢的等其他类型的问题关于pH的影响,可在动力学方程的参数上,作为动力学常数的乘积因子的形式进行耦合,或者单独列出其动力学方程,从而统一在广义Monod方程之下。关于H2S的影响,引起污泥膨胀的H2S数值很低,一般是在12.0mg/l。每升几毫克硫化氢似乎不足以供发硫菌或贝氏硫细菌大量增值的能量,相反几十到上百ppm的有机酸是值得注意的因素。向污水中添加H2S,即使H2S浓度达到 50mg/l也并不发生膨胀。事实上,一些厌氧装置运转的较好,虽然出水含有大量H2S,但是挥发酸浓度很低时,好氧后处理也不发生膨胀。当污水处于腐败和厌氧条件时,污水厌氧发酵的同时产生H2S和挥发酸。挥发酸主要包括乙酸、丙酸等,这些低分子易于降解,造成耗氧速率的增加,从而引起氧的限制型膨胀,这是造成污泥膨胀的根本原因。而H2S的出现是污水厌氧发酵的一个伴随现象。因此H2S的膨胀类型可归为溶解氧限制类型的膨胀,从而广义的Monod动力学模型可以在一定程度上很好地统一污泥膨胀的理论。2.3 双基质的Monod方程由于城市污水中N、P和其它营养元素一般不缺乏,因此在一般情况下,可只考虑碳源限制和DO限制两种情况。这样城市污水的丝状菌膨胀问题就简化为两种主要类型的膨胀问题,即基质限制和溶解氧限制类型。max S/(Ks+S)DO/KDO+DO (2)其中:max:最大生长速率(d-1);Ks:基质亲和力(mg/l);KDO溶解氧亲和力(mg/l);在双基质限制下,低负荷的完全混合曝气池不利于污泥沉淀性能的改善,而中、高负荷的膨胀则在完全混合曝气池中有所缓解。中、高负荷系统由于首端缺氧不利污泥沉降性能,所以在推流式曝气池需要采取措施避免供氧不足。反之,推流式曝气池有利于克服低负荷的膨胀,即高负荷与低负荷是两种类型完全相反的膨胀现象。5、污泥膨胀数学模型的研究5.1污泥膨胀的数学模型为了简化系统模型,数学模型的建立基于以下几个假设:1)活性污泥由两大数群微生物组成,即丝状菌和菌胶团菌;2)微生物生长主要受到碳源和DO限制;3)微生物生长的动力学可用同一基本模型来描述;4)曝气池是完全混合式;模型所描述的系统如图1所示。其中反应器1可以是选择器、曝气池等等,反应器2是曝气池。在没有选择器的系统中,回流污泥按虚线所示的途径回流。根据以上假设及图1中的物料平衡关系,可给出选择器和曝气池中基质(碳源和DO)和微生物(菌胶团和丝状菌)的如下一组方程: 对选择器有如下方程成立:对菌胶团菌:dX11/dt (1kd11/c) X11(3) 对丝状菌:dX21/dt (2kd21/c) X21 (4)对碳源基质:dS11/dt = Dk(S10+rS12)-(1r)D1S11-1X11/Y1-2X21/Y2(5)对溶解氧: dS21/dt -(1r)D1S21 +Kla(S2S-S21) -1X11/Y1-2X21/Y2 (6)对曝气池有如下方程成立:对菌胶团菌:dX12/dt (1r)D2(X11-X12)+(1kd1) X12(7)对丝状菌:dX22/dt (1r)D2(X21-X22)+(1kd1) X22(8)对碳源基质:dX12/dt (1r)D2(S11-S12)-1X12/Y1-2X22/Y2 (9)对溶解氧:dS22/dt (1r)D2(S21-S22)+Kla(S2s-S22) -1X12/Y1-2X22/Y2 (10)其中: 状态变量:Xik=污泥浓度(mg/l);Sjk基质浓度(mg/l),i1,2分别代表菌胶团和丝状菌;j1,2分别代表碳源和DO;S10=碳源基质初始浓度(mg/l); S2s饱和溶解氧浓度(mg/l);操作变量:Dk稀释率(d-1) k1,2分别代表选择器和曝气池; r回流比;动力学常数:kdi衰减常数(d-1);Yi产率系数(g/g);Kla传质系数(min-1);其常数见表1;i= 比生长速率采用的双基质模型(方程2),i1,2分别代表菌胶团和丝状菌;5.2曝气强度和负荷的影响微生物对有机物的降解过程实质上就是对氧的利用过程。溶解氧在活性污泥法的运行中是一个重要的控制参数,曝气池中DO浓度的高低直接影响着有机物的去除效率和活性污泥的生长。低DO浓度一直被认为是引起丝状菌污泥膨胀的主要因素之一。丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。根据各方面的研究反应,DO对于污泥膨胀影响的的临界值并
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 结扎技术考试题及答案
- 科目一驾照考试题及答案
- 郑州餐饮考试题及答案
- 儿科跌倒考试题及答案
- 快速镀锡考试题及答案
- 桂东电力面试题及答案
- 法律面试题目及答案
- 广州药厂面试题及答案
- 陕西中考新试题及答案
- 2025年大数据管理与应用专业毕业设计开题报告
- 2025电力现代供应链与仓储管理
- 尿毒症护理疑难病例讨论
- 回肠造口还纳护理查房
- 辅导班劳务合同协议
- 宋代汉族服装风格演变及其社会功能
- T∕CWEA 29-2024 水利水电工程砌石坝施工规范
- 日本签证个人信息处理同意书
- 新兵培训课件模板
- 2025年初中语文教师招聘面试八年级上册逐字稿之愚公移山
- 自考《课程与教学论》考试复习题(附答案)
- 饲料粉尘清扫管理制度
评论
0/150
提交评论