




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章_质点组动力学_习题解答_By XuJie4.1、在一半径为的圆圈上截取一段长为的圆弧,求出这段圆弧的质心位置。解:建立如图所示的直角坐标系,长为的圆弧的夹角范围由质心定义:考虑到圆弧的对称性和坐标的选取,写成正交分解式得:所以在图所示坐标系中,圆弧的质心坐标为:4.2、求出半径为的匀质半球的质心位置。解:取球心为原点,建立如图所示的直角坐标系取右侧半球进行计算。因半球关于轴对称,所以质心位于轴上。把半球看成是垂直于轴的系列厚度为的薄圆片堆砌,那么距离原点为处、半径为的薄圆片的质心为设半球的密度为厚度为的薄圆片的质量为:则半球的质心位置为:所以半球的质心位置在图示坐标中为4.3、两只质量均为的冰船,静止地放在光滑的冰面上。一质量为的人自第一只船跳入第二只船,并立即自第二只船跳回第一只船。设所有的运动都在一条直线上。求两船最后的速度之比。解:取两只冰船和人为系统,在水平方向受到合外力为0,故在水平方向系统动量守恒。第一只冰船最后的速度为,第二只冰船最后的速度为,那么人的最后速度为初始时,系统静止,所以有:即,负号表示,的速度方向相反。4.4、一船以速度前进,船上某人以相对速度向船头抛出一质量为的铁球。已知船和人的总质量是。求人抛掷铁球所作的功。解:在质心坐标系中,设船相对质心的位矢为,铁球相对质心的位矢为,那么铁球相对船的位移为:,由质心定义,质心系中质心为原点。联立两式有:,求导有:,由动能定理可求出:4.5、一质量为的粒子爆炸成质量相同的三小块。其中两块的飞行方向相互垂直,它们的速率分别是和。求出第三块的速度和动量的大小。解:在直角坐标系中,设粒子爆炸后第一块速度是,第二块速度是,第三块的速度为,爆炸时内力远大于外力,动量近似守恒:所以有:,动量为4.6、重量为的大楔子放在光滑的水平面上,在它的斜面上放置一与它相似的小楔子。小楔子的重量是。大、小楔子的水平边长分别为和。小楔子自大楔子顶部静止下滑,求小楔子完全下滑到水平面时(如图虚线所示),大、小楔子分别移动了多少距离?解:取小楔子静止下滑时,大楔子的直角顶点为原点,建立一维坐标系如图所示。设小楔子的位矢为,大楔子的位矢为,那么小楔子相对大楔子的位移为当经历时,小楔子完全下滑到水平面时, (1)初始时刻, (2)小楔子和大楔子在水平方向上所受的合外力为零,动量守恒: (3)对(3)式积分有: ,为积分常数当时,由(2)式知,所以当经历时,小楔子完全下滑到水平面时有: (4)联立(1),(4)两式解得:,4.7、一炮弹以仰角发射,速率为,当炮弹达到最高点时,爆炸成质量人别为和的两块弹片。已知火药爆炸的能量是。爆炸后的瞬时,两弹片仍沿原方向飞行。求两弹片落地时相隔的距离解:设爆炸后质量为和的两块弹片的速度为别为和,爆炸过程内力远大于外力,动量守恒,当炮弹达到最高点时,速度为。即因爆炸后两块弹片仍沿原方向飞行,所以有:爆炸后的能量守恒:联立上两式可求得:,所以落地时相隔的距离为:4.8、重量为的人,手里拿着一个重量为的物体,以与地平线成角度的速度向前跳出。当他达到最高点时,将手中的物体以速率向后抛去。问抛出物体后,人向前跳的距离增加多少?解:取人和物为系统,水平方向受力为0,动量守恒。设人抛物后的速度为即解得所以人向前跳增加的距离为:4.9、质量为的物体沿一直角劈的光滑斜面下滑,直角劈的质量为,倾角为,置于光滑水平面上。求:(i)物体水平方向的加速度分量(ii)劈的加速度大小(iii)劈对物体的反作用力和水平面对劈的反作用力解:建立如图所示的静止一维坐标系,取物体下滑时,直角劈的直角顶点为原点。设质量为的物体的水平位矢为,质量为的直角劈的水平位矢为。物体在直角劈下滑时,物体和直角劈整体在水平方向不受力,动量守恒: (1)求导有: (2)若以直角劈为参照物,那么物体受和如图示。设物体相对斜面下滑的加速度为,则有:即 (3)从而物体的水平方向的加速度为:即 (4)联立(2)、(3)、(4)可得:,若以直角劈为参照物,那么物体在垂直于斜面方向合力为0,则有:即代入可得直角劈的受力如图所示,在竖直方向有:即代入和可得4.10、质量为、半径为的光滑半球,其底面放在光滑的水平面上。一质量的质点沿此半球面下滑。设质点跟球心的连线与铅直轴之间的夹角为。已知初始时系统是静止的,。求当时,的值。解:如图,取半球静止时圆心为原点,建立静止直角坐标系,质点沿着半球滑下时,质点相对半球的速度为设质点沿着半球滑下时,半球的速度为,那么质点的速度为:质点沿着半球滑下时,质点和半球在水平方向受力为0,所以水平方向动量守恒: (1)质点沿着半球滑下时,只有重力做功,机械能守恒: (2)联立(1)、(2)可解得:4.11、质量为的小珠能在一水平光滑的滑轨上滑动。另有一质量也是的质点用无弹性的轻绳与联结,质点可在铅垂平面内摆动。已知绳长为。初始时系统静止,绳与铅直线间的夹角为。证明:当夹角时,有解:设小珠的速度为,质点相对小珠的速度为那么质点的速度为小珠和质点组成的系统在水平方向受力为0,动量守恒: (1)小珠和质点组成的系统在运动过程中,只有重力做功,机械能守恒(A点为零势能点): (2)又质点相对小珠作圆周运动,所以有: (3)联立(1)、(2)和(3)式有:所以当当夹角时,有4.12、在光滑水平桌面上,有两个质量都是的质点,用长为的不可伸长的轻绳联结。今在其中一个质点上作用与绳垂直的冲量。求证此后这两个质点分别作圆滚线运动,且它们的能量之比为,其中为质点运动时间。解:如图,取绳中点为原点,建立直角坐标系附着在质心上,沿初始绳方向为轴。初始时刻,若质点获得垂直的冲量后的速度为据质心定义,求导有:所以原点的速度为由于质点获得垂直的冲量后,和在水平面上不再受到外力,所以点将匀速运动。据速度合成原理知,质点相对质心的速度为,质点相对质心的速度为把分隔开来研究,设的坐标为,那么:,即质心系为惯性系,所以绳的拉力对不做功,质点的动能守恒 ,即速率不变。所以质点做相对质心的匀速率圆周运动。同理质点做相对质心的匀速率圆周运动。因质心做匀速直线运动,质点和做匀速率圆周运动,故质点和做圆滚线运动。如图,经过时间后,质点和质点旋转角为:此时质点和相对质心的速度为:那么质点和的绝对速度为:所以它们的能量之比为:4.13、质量为的小环,穿在质量为的光滑圆圈上,此体系静止地平放在光滑的水平桌面上。今若突然使小环沿圆圈的切线方向有一速度,试证明圆圈将不发生转动,而圆心则绕体系的质心作等速圆周运动。证明:取小环和大圆圈为质点组。如图,取质点组的质心为原点,建立直角坐标系附着在质心上,沿初始时圆圈和小环的连线方向为轴。初始时刻,小环获得切线方向的速度为。据质心定义,求导有:质心的速度为:,质点组在水平方向上所受的合外力为零,故质心将做匀速直线运动。初始时,圆心相对质心的速度为:设点的坐标为,大圆圈的半径为,质心与点的距离为,由质心定义有:,解得那么,即质点组的质心系为惯性系,小环对大圆圈的作用力不做功,大圆圈质心的动能守恒,即速率不变。所以大圆圈的圆心绕质心做等速圆周运动。4.14、一长为的匀质链条,悬挂于钉在墙上的光滑钉子上。开始时,挂在钉子两边的链条长度相同,处在平衡状态。后因微小扰动,链条自一边滑下。求在链条完全脱离钉子的时刻,链条的速度大小。解1:在链条下滑过程中,只有重力做功,机械能守恒(设链条的质量为):取钉子所在的水平线为0势能。解得:解2:动能定理(相当于把左侧移到右侧下部):解得:4.15、长为的匀质链条,伸直地平放在光滑水平桌面上,链条与桌面的边缘垂直。初始时,的一半从桌面下垂,但处在静止状态。求此链条的末端滑到桌子的边缘时,链条的速度大小 。解1:在链条下滑过程中,只有重力做功,机械能守恒(设链条的质量为):取桌面所在的平面为0势能面。解得:解2:动能定理:解得:4.16、质量为、面积为的圆盘,盘心受一与平面垂直的恒力作用,同时有一股体密度为的尘土以恒定的速度迎面而来,与盘面相遇的尘土皆粘于盘面上。已知圆盘的初速度为零。求时刻圆盘的速度及圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力工程现场应急演练记录范文
- 2025内蒙古兴安盟阿尔山市银龄教师助教计划招募5人备考练习题库及答案解析
- 班主任基本功大赛笔试题含答案
- 2025版图书出版社与教育机构合作出版合同范本
- 2025年新能源汽车无线充电技术在电动沙滩车充电站的解决方案报告
- 2025年企业员工培训效果提升代理合同书
- 2026届四川省任隆中学化学高二上期中考试试题含解析
- 2025版商业物业装修管理及智能化升级改造与维护协议
- 2025年度企业市场营销策略与渠道拓展咨询服务合同
- 2025版高精度监控系统设备安装与长期维保一体化合同
- 11科室临床路径、单病种管理目录
- 《廉洁从业》企业文化培训课件
- 综合性文稿写作名师优质课赛课一等奖市公开课获奖课件
- 《生物多样性公约》及国际组织课件
- 种子全程质量管理制度
- 滴定管使用课件
- 单片机应用技术项目教程C语言版ppt课件(完整版)
- 公司金融课件(完整版)
- 高处作业审批表
- 太湖综合整工程生态清淤取土工程施工组织设计
- 14S501-1 球墨铸铁单层井盖及踏步施工
评论
0/150
提交评论