甲板上不规则波的举力试验研究外文翻译毕业论文.doc_第1页
甲板上不规则波的举力试验研究外文翻译毕业论文.doc_第2页
甲板上不规则波的举力试验研究外文翻译毕业论文.doc_第3页
甲板上不规则波的举力试验研究外文翻译毕业论文.doc_第4页
甲板上不规则波的举力试验研究外文翻译毕业论文.doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计开题报告题 目: 南通港码头工程设计 甲板上不规则波的举力试验研究摘要: 实验室设置探讨不规则波裸露的高桩码头上升负荷。它显示量纲上升负荷增大到最大,增加相对间隙,然后降低。相应的峰值力相对清除链接范围从0.4到0.8。相对间隙超过一定值时,波不能达到甲板的底面则力变为零。不同量纲力趋势的甲板上显示的力度趋于减少,相对的甲板宽度增加,相对宽度,然后减慢下降后的相对甲板宽度增加或减少到一定值。相当于波接触宽度x长度与最大举力相关的压力分布。当x是大于B的宽度时,载荷的统计分布服从韦伯分布。实际数据的分析结果表明了一种新的无量纲波在甲板上上升负荷和在不同超越概率的波浪载荷之间的转换率的估测模型。表现一个比较新的估测模型和现在广泛使用的三种估测模型之间的关系。这些结果被用来作为码头结构设计有益的参考。关键词:不规则波;拔力;高桩码头1 介绍随着沿海资源的开发,需要开发开放式结构的码头,如边际码头,独立码头,人工岛,停泊港口以外的海豚,海上平台的需求逐日增加。通常,这些设施建造地点没有防波堤保护,经常发生因大风浪达到上层建筑而导致甲板严重损害的现象。据说是由于一些类似的海洋结构已损坏的桥面标高不合理的结果。对于部署在这些部分的结构,甲板应设计在临近上层建筑,以确保发生波浪力的概率很低,在甲板应该强大到足以承受波浪载荷。此外,其他应考虑的因素,如材料成本,这表明适当选择桥面标高和码头的结构设计是非常有必要的。因此,应当准确的估测大大甲板上甲板波上升与在各种波浪条件下不同结构的几何负载离子,使之在设计使用中成为重要指标。附近的静止水位(王,1970年几个板块研究解决了波上升负荷的问题;戈达,1967年;郭、蔡,1980 ; Patarapanich ,1984 ; Wood 和 Peregrine,1996年;李和黄,1997年;周等人,2003年, 2004年;任等人,2007)。在一些调查中,在对曲线进行了理论分析的基础上考察了动量和能量的因素(王,1970)。戈达(1967)建议考虑甲板上势头增加的因素,提出了以水的质量随时间变化的理论为基础的栈桥上托力的经验公式。他认为这是冲力的组成部分,有助于计算裸露的栈桥甲板上的最大浮升力。中国港湾工程(1994)设计手册中的建议用一个相对简单且广泛使用的公式来估计甲板上的浮升力。郭和蔡(1980)进行了实验,测量了站立在浅水的纵梁及裸露在破碎波下的横板的上升负荷,然后提出了一个实证模型。周和陈( 2003年,2004年)提出了另一个波横板上升的实验研究方案,该实验考虑到间隙、波陡和甲板宽度的效果。波上升被认为是由两部分组成,一个是持续时间短的影响力,另一种是持续时间长的影响力。在某些情况下,影响组件大多超过了缓慢变化幅度的10倍。由于指导方面的力度与影响因素的复杂性,冲击上升负荷是不容易获得的。大多数是在现有模型基础上进行定期波测试,测得的数据非常分散 ,导致不同型号上得出的的结果的测量范围之间存在着重大差异,即使现有的方法根据自己的情况可以提供足够的负载估计,实际操作上仍强烈建议采取进一步系统的研究调查。2实验设置和程序波浪水槽波的测试分别在1. 0米宽,1.2米深,80米长的水槽中进行,如图1所示 。将所提供的水槽的一部分,分为两部分,分别为0.5米和0.5米。一个是试验段,另一种是采用第二反射波能量扩散。为了减轻波的反射波,消散缓坡位于水槽两端。生成波浪的造波机置于水槽的另一端。在裸露的的高桩码头的甲板上,构建了一个1 .5厘米厚的PVC板。波传播方向上的宽度是B 。向下的横梁,高8厘米,宽4厘米。横梁(中心到中心)之间的距离为24 .75厘米。向下的纵向梁高5厘米, 2厘米宽。纵梁之间的距离(中心到中心)是20厘米,如图1所示。 测试涵盖了波浪条件范围( JONSWAP ,显着的入射波高Hs = 5 , 10 ,15 , 20厘米,平均入射波浪周期Tm= 1.0,1.2,1.5,2.0 ,2.5秒)。桥面宽度为= 30 ,50 ,80 ,102厘米。对六种不同比率间隙 的重大事故浪高 H / Hs进行了测试: H / H = 0,0.1,0.2,0.3,0.4,0.6 。水深在码头模型D = 50厘米。间隔波代表用来消散波的多次反射。每一波集的持续时间为5 9分钟,波数为120 150 。每个测试组重复3次,这样可以保证测量数据的可靠性。数据采集的采样时间间隔为1/125秒。上述条件下进行的测试约200套。 图1。裸露的高桩码头(单位:厘米,规模: 1:36 )的实验装置示意图。3.结果与讨论3.1分布长度与上升高桩码头甲板上的力的关系空间压力分布与上升曲线已被归类为冲击型和统一类型,从图2图4中的测试所示。最大的上升荷载普遍落后的最大的冲击压力是均匀分布的压力。这意味着,举力最大的冲击压力不是最大的。均匀分布相应的压力相对较小,而分布的长度是大的。波长度的分布长度随着间隙的递减而增加。相反,对于冲击型分布,压力是非常大的,但在小范围内不一定。相关的分配长度也符合上述规律。分布长度随着研究者和估计方法的不同而各不相同。例如,郭和蔡(1980)使用L/ 4 ,而戈达使用L/ 9 L / 6 。选择波长的恒定比例,这里指的分布长度是不合理的,因为具有相同的波长情况下的值将保持不变,甚至不同的间隙导致的实的现象也是显然不一致的,相应的间隙越大,分布长度越小。这将导致在浮升力过高估计。这是可以理解的上升压力的表面(即波作用面)是密切相关的波接触长度。因此,使用波接触长度来表达的分布长度似乎更为合理。对实验数据的概括和分析可以得出,统一类型的分布长度等于x。当x大于B的宽度时: 图2. 甲板上(统一类型,相应的波接触长度1 = 0.93米)的压力分布。 图3. 甲板上(统一类型,相应的波接触长度1 = 0.5米)的压力分布。 图4. 甲板上的压力分布(冲击型,相应的波接触长度X = 0.93米)。3.2 裸露的高桩码头上波对甲板的冲击负荷3.2.1 实际几何和流体力学变量等参数分析实测数据的分析证实,影响升力的主导因素是波高,波长,甲板粗糙度,甲板宽度。3.2.1.1 间隙的影响甲板上的无量纲上升负荷 相对关 绘在图5中 其中P1表示甲板长度单位波在甲板举力(超越概率为1 )的最高值,该长度方向垂直于波的传播方向; 上半年入射波高(超越概率1); h是甲板间隙 1,在最大的自由表面高程水位(与H 1 L处)以上; Ls是显着的入射波长(显着的波动周期); 1 是波接触长度( 1, L处);系数1 .1归因于波反射的放大系数。当x 1是大于B的宽度时,其中B 、D为水深。图5. 量纲最大抬升与相对间隙力图5中可以看到相对间隙的量纲上升负荷的明显趋势。这表明,力先随着间隙的日益增大增至最大值,然后再下降。应当指出,相应的高峰上升力与相对的间隙不是一个固定值,范围从0.4到0.8。甲板上升到一定水平,其中波低于间隙,波峰不能碰在甲板上,其上的力度变为零。应当指出的是,甲板与横梁所经历的力度不同,表现出的行为也不同,它受到了甲板配置的影响。对于有梁的甲板,相应的峰值力和零力的间隙往往随间隙缓慢减少。下梁波反映了传入波浪浪高增加的结果,波高的增加,表明接近甲板上的波场的动态的增强,其结果是强化波峰可以达到甲板的很高处,转移波运动区域的压力峰值点。脉冲压力受到波动力学的影响,在低间隙期间,浪高的气垫压力可以起到减轻和统一的作用,对冲击压力的影响不大。然而,净空高方面,由于没有气垫,大浪高波的能量大,会导致较大的脉冲压力。在具有相同波高的情况下,波动力学是相同的,这意味着此时最大的冲击压力将取决于间隙和波陡。在间隙过大的情况下,压力峰值通常出现在大波陡处,而高峰期的压力将出现在小间隙情况下小的波陡处。3.2.1.2 甲板宽度的影响图6描述了相对于甲板宽度的最大浮升力(超越概率为1 ),由图易见,增加甲板宽度,对应于桥面宽度的绘制曲线也上升,当甲板宽度增大到一定值时,曲线保持不变。在某些情况下,曲线略有下降。根据测试,趋势的力度可以解释如下:狭窄的甲板的宽度小于波的宽度,整个甲板裸露于波浪的拍打中,并且甲板越宽,浪运动表面就越大,全部力量就波及越远。力度保持不变时,甲板宽度相当于运动波宽度。随着甲板变得更宽,力也将增加。它表明,总力量的变化导致了甲板上波峰和波谷的更替变换。假设桥面宽度比一次波长大,考虑到二次波的经验值可以预计出总的力度将增加。所以从上面分布长度与波作用宽度的分析可以看出,只考虑到用波长来表示压力分布的长度是不合理的。图6 与甲板的宽度最大的上升负荷图7明确展现了提升力的LS /B关系,表明随着甲板宽度的增加(即LS /B的比例),波浪力有减少的趋势,当桥面宽度低于一定值时,曲线下降速度将减缓。这归因于以下原因:第一,作为甲板宽度比波作用面宽度较小,行动上的接触区域集中,甲板上的压力分布几乎是恒定的,因此甲板宽度的略有变化对总力度的影响不大。第二,在波运动宽度不超过甲板宽度一定限额时,非均质波行动总力度将略有减少。第三,当甲板宽度超过运动波浪一定宽度时,总力度将提高一点,压力分布长度保持不变,因此无因次力似乎几乎不变。应当指出,在一个大的间隙水平下,桥面宽度大多比波宽度大,因此无因次上升曲线随着桥面宽度上网增加将略有下降。图7 上升与LS / B无量纲最大负载3.2.2 上升负荷估测模型被发现的波面,空气层和波动力学的影响的角度裸露的高桩码头的甲板上装载过程的主导影响因素。基于测量数据的分析,估测新方法开发利用信封所有的测试,以确保在工程应用中的安全,如式 (3)所示 。包括相对甲板宽度的影响系数为1.1介绍了在计算坝顶高程从甲板上和向下的光束代表波的反射。3.2.3 比较的测量与估测的无量纲举力的新方法波在甲板上升负荷估测公式(3)与图8和图9中测得的数据的比较表明,新的估测方法,给出了一个上升幅度大曲线的好成绩,而在这个模型中的偏差主要来源于是小幅度的力度。主要发展趋势是,它低估净空高情况下的力度,相应的力度变小从而避免了设计时的严重形势。一般来说,模型给出了保守的设计成果。3.2.4 新的估测方法与现有估测方法的比较图10给出了四个新的估测模型和现有的三个估测模型图之间比较的例子。其中压力分布长度为L/ 41 (无波的反射系数)和 L/ 6 1 (有波反映系数),分别都满足戈达模型(1967年)。现有的指导模型(1994)是由郭,蔡于1980年提出的新的估测方法。在1 比B大的情况下,值取为B 。比较结果显示以下细节:若仅作为一个结果,而不考虑甲板宽度的影响,现有的指导模型高估了宽甲板(宽度B = LS )的力度,但在狭窄的甲板上(宽度= L处/ 8 )却低估了其力度。根据现有的指导模型估测,最大的抬升力出现在静止水位,其中不同的趋势仍然出现在在上述测试中水位的相对间隙处。在力度峰值发生 H / 1 = 0.4 0.8处,力值大幅降低,再结合间隙增加的线性关系,从而可以估测间隙过大时抬升力是比较小的。窄波接触长度范围可以消除相应的有效上升力,坝顶的高程计算不考虑波的反射影响。戈达模型给出非常大的上升负荷估测,戈达模型适于安装在开放式栈桥的深水处,从结构而来的反射波很巨大,其形成的干扰驻波将对甲板造成很大的压力影响。郭蔡模型猜测是脉冲压力导致了上升荷载,从而给出了比较接近的结果。采用了和波长成正比的分布长度Ls / 6,但它独立于净空,从而导致高估波浪力的大波长度和甲板高的间隙。与图10中其他模型的估测相比,考虑甲板配置和反射波的影响效果,该处得出的方程呈现出显着的改善。此外,应注意下梁和停泊成员的力度,贡献大曲线在净空高级别码头的上层建筑,但在这种情况下,波不能达到甲板,甲板上的力度是零。因此,间隙过大的情况下,甲板上的力度,向下的光束和靠泊部分应分别计算,总和将会是期望的结果。个案研究中的应用与实际结果证实,它提供了一个更加一致的估测值。图8 量纲最大上升负荷和最大包络。图9 测量量纲上升曲线提出的新的估测方法的比较。图10新的估测模型与现有的估测模型的比较。3.3 上升荷载的概率分布波在甲板上升是由随机的不规则波负载引起的。正常的参数的数据分布,三参数伽玛分布, 韦伯分布和瑞利分布,是Kolmogorov-Smirnov主张的检验四种型号测试的。从研究的结论中得出,它几乎符合75 的测试数据集的韦伯分布,主要是由那些相关情况而使间隙过大。更高的间隙偏差是可以理解的,因为更高层次的甲板上,在随机波浪序列的小浪不能达到甲板,此时相应的力度数据集的值是零。 韦伯模型测量上升负荷差拟合结果中的实际数据的分析结果证实,负荷分布服从韦伯分布,波浪载荷与不同超越概率的转化率展示在表1。表1不同超越概率的波浪载荷之间的兑换比率4.结论如表1所示,韦伯分布提出了描述上升负荷的统计分布方法。从测力分析推导出波浪载荷与不同超越概率的转化率,。该部分分为冲击型和均匀型,上升曲线相关的空间压力。最大上升负荷普遍落后的最大的冲击压力与均匀分布的压力有关。这意味着,举力最大的冲击压力不是最大的。均匀分布相应的压力相对较小,而分布的长度是随着大波长度的增加和消除而减少和增加。概括和分析实验数据证实,该统一类型的分布,长度相当于1 。当x 1的宽度大于B时,值取B。加载过程中占主导地位的变量是入射波的高度,入射波长,甲板仍然水位以上的间隙,桥面宽度。结果表明相对间隙超过一定值时,波不能达到甲板的底面则力变为零。不同量纲力趋势的甲板上显示的力度趋于减少,相对的甲板宽度增加,当相对甲板宽度增加或减少到一定值时,相对于宽度的曲线将减慢下降,相对于净空高度的相应的峰值力范围将从0.4到0.8。当间隙超过波峰时,可达到甲板的垂直距离,此时力度变为零。实验显示,甲板宽度增加时受力趋于减少,相对宽度的无量纲力的趋势,然后减少减慢后甲板宽度的增加或减少到一定值。通过所有测试结果可以得出一种新的估测方法,该方法考虑到两个主要因素,即相对间隙和相对甲板宽度。结果表明,新的估测方法,给出了一个大幅度上升曲线的好成绩,而在这个模型中的偏差主要来源于是小幅度的力度。该方法的主要发展趋势是,它低估净空高情况下的力度,相应的力度变小从而避免了设计时的严重形势。参考文献1. 戈达, Y. ,1967 。结构上的波浪力,液压, JSCE , B34的夏季研讨会。 (日本)郭达和蔡保华,1980。托力计算波板为中空桁架结构,华东水利学院学报,(1) :14 33 。 (在中国)2李燕宝和黄灵岩, 1997年。裸露的码头,港口工程,(6)上层建筑的托力: 913的实验研究。 (在中国)3. Patarapanich , M. ,1984 。在横板,由于波的散射,海岸曲线和时刻。 ENG。 , 8 (3): 279 301 。4. 任兵,李学林,王永学,2007 。波地一声板,中国海洋工程的瞬时性能的实验研究。 , 21(3) : 533 540.The第一航务工程规划与设计研究所,1994年中国通信部。在中国港口项目的设计手册,人民交通出版社,北京。 (在中国)5. 王, H. ,1970年。水横板波压力,液压分部, ASCE , 96( HY10 )杂志:1997年2016年。6. Wood 和 Peregrine ,1996年。浪潮的冲击下水平表面, PROC 。 25诠释。 CONF 。在海岸。 ENG。 ,奥兰多, ASCE , 3 , 2573 2583 。7. 周苡仁,陈国平,黄涵,王邓婷,2003年。提升压力波对横板,中国海洋工程。 355 368 。8. 周苡仁,陈国平,黄涵,王邓婷, 2004年。波托力上了一个开放的码头,海洋工程, 22(4)横板的实验研究: 43 50。 (在中国)外文原文(复印件) Experimental Investigation of Irregular Wave Uplift Force on Deck ABSTRACTA laboratory setup was developed to investigate irregular wave uplift loads on exposed high- pile jetties. It is shown that the dimensionless uplift load increases to the maximum with an increasing relative clearance and then decreases. The relative clearance corresponding to the peak force is linked to a range from 0. 4 to 0. 8. When the relative clearance exceeds a certain value, the wave can not reach the underside of the deck and the force becomes zero. Distinct trends of dimensionless force with a relative width of deck show that the force tends to decrease as the relative deck width increases, and then the decrease slows down after the relative deck width increases or decreases to a certain value. The pressure distribution length associated with the maximum uplift force is equivalent to the wave contact width x . When x is larger than the width of deck B, it is taken as B . The statistical distribution of loads obeys the Weibull distribution. The results from the analyses of the real data suggest a new dimensionless prediction model on wave- in- deck uplift loads and the conversion ratio between wave loads at different exceedance probabilities. A comparison is made between the new prediction model and the existing widely used three prediction models. These results are used as useful references for structural design of the jetty.Key words: irregular wave; uplif t force; high-pile jetty1. IntroductionAlong with the increase of the demand for coastal resources exploitation, the need for developing open structures, such as marginal quay, detached wharf, artificial island, mooring dolphin outside harbor, and offshore platform is of considerable interest. These facilities are usually constructed in locations without breakwater protection, and severe damages of deck often occur due to large waves reaching the superstructure. A number of similar ocean structures have been reportedly damaged as a result of irrational deck elevation. For structures deployed at such sites, the deck level should be designed at an allowance to ensure a low probability of occurrence of wave forces on the superstructure and the deck should be strong enough to withstand the wave loads. In addition, other factors should be considered such as material costs which indicates appropriate selection of deck elevation and structural design of the wharf . Therefore, accurate predict ion of wave- in-deck uplift loads on deck with different structural geometries under various wave conditions are considerably important for guidance used in design. Several researches have addressed the problem of wave uplift loads on slabs near the still water level( Wang, 1970; Goda, 1967; Guo and Cai, 1980; Patarapanich, 1984; Wood and Peregrine, 1996; Li and Huang, 1997; Zhou et al . , 2003, 2004; Ren et al . , 2007) . In some investigations, the forces were theoretically analyzed based on momentum and energy considerations (Wang, 1970) . Goda ( 1967) suggested an empirical formula for uplift forces on the deck of trestle bridge based on the momentum theory considering that the added mass of water varies with time. He held that it was the impulsive component contributing to the maximum uplift loads on the deck of exposed trestle bridge. A relatively simple and widely used formula to estimate uplift load on deck was recommended in The Handbook for Design of Harbor Projects in China ( 1994) . Guo and Cai ( 1980) carried out laboratory tests that measured uplift loads acting on horizontal plate, -type deck with down-standing longitudinal beams in shallow water, and horizontal plate exposed to breaking waves, and then proposed an empirical model. Zhou and Chen ( 2003, 2004) reported another experimental study on wave uplift on horizontal slab, taking into account the effect of the clearance, the wave steepness and the width of deck. The wave uplift is genera-l ly considered to be made up of two components, one is short duration impact force and another is long duration force. The impact component mostly exceeds the slow-varying one and in some cases up to more than 10 times in magnitude. Owing to the complexity of influencing factors related to the impulsive uplift load, guidance with respect to the force is not readily available. Most of the existing models are presented based on regular wave tests, and the measured data is very dispersed over the range of measurements for above methods, which results in significant discrepancies among the results of different models, even though the existing methods can likely provide adequate estimates of loads under their own situations. Further research is strongly recommended for systematic investigation.2. Experimental Setup and ProcedureThe wave tests were conducted in a wave flume of 1. 0 m wide, 1. 2 m deep, 80 m long, as shown in Fig. 1. The service part of the flume was divided into two parts, 0. 5 m and 0. 5 m respectively. One is the test section; another is employed to diffuse the second reflection wave energy. Wave dissipating mild slopes are located at the two ends of the flume in order to mitigate the wave reflection. Waves are generated by a wave maker at one end of the flume.The deck of the exposed high-pile jetty was constructed with a 1. 5 cm thick PVC plate. The width in the direction of wave propagation is B . The down-standing cross beam was 8 cm high and 4 cm wide. The distance between the cross-beams ( middle-middle) was 24. 75 cm. The down-standing longitudinal beam was 5 cm high and 2 cm wide. The distance between the longitudinal beams ( middle- middle) was 20 cm, as shown in Fig. 1.The test covered a range of wave conditions ( JONSWAP, significant incident wave height H s= 5, 10, 15, 20 cm; mean incident wave period Tm= 1. 0, 1. 2, 1. 5, 2. 0, 2. 5 s) . The width of deck was B = 30, 50, 80, 102 cm. Six different ratios of clearance h to the significant incident wave height h/H s were tested: h/H s= 0, 0. 1, 0. 2, 0. 3, 0. 4, 0. 6. Water depth at the jetty model was d= 50 cm. The interval wave generation form was used to dissipate the multiple reflections of waves. The duration for each wave set was 5 9 min and the wave number was 120 150. Each group of tests was repeated 3 times so that the reliability of the measured data could be guaranteed. The sampling time interval of data acquisition was 1/ 125 s. About 200 sets of tests were conducted under the conditions mentioned above. Fig. 1. Sketch of the experimental setup of the exposed high- pile jetty ( unit: cm, scale: 1: 36) .3. Results and Discussions3. 1 Distribution Length Associated with Uplift Force on High-Pile Jetty DeckThe spatial pressures distribution associated with uplift forces have been categorized as the impulsive type and the uniform type from tests shown in Fig. 2 Fig. 4. The maximum uplift loads generally lag behind the maximum impulsive pressure and are associated with the pressure uniformly distributed. It means that the uplift force related to the maximum impulsive pressure is not the largest. For uniform distribution, the corresponding pressure is relatively small, while the distribution length is large. The distribution length increases with the wave length and clearance decrement . On the contrary, with regard to the impulsive type distribution, the pressure is extremely large but localized in a small area. The relevant distribution length also conforms to the trends as mentioned above. The estimation of the distribution length varies among different researchers and methods. For example, Guo and Cai (1980) uses L / 4, while Guoda uses L / 9 L / 6. Selecting a constant ratio of wave length here to denote the distribution length is unreasonable because the values for cases with identical wave length would remain constant even for different clearances, which is clearly inconsistent with the phenomenon recognized in experiment that the distribution length corresponding to large clearance is small. It would result in over-estimation of the uplift loads. It could be understood that the uplift pressure acting surface ( namely the wave acting surface) is strongly linked to the wave contact length. Therefore, taking the wave contact length to express the distribution length seems more reasonable. Generalization and analysis of the experimental data confirmed that the distribution length of the uniform type was equivalent to x . When x is larger than the width of deck B, it is taken as B. Fig. 2. Simultaneous pressure distribution on the deck ( uniform type, the corresponding wave contact length x 1% = 0. 93 m) . Fig. 3. Simultaneous pressure distribution on the deck ( uniform type, the corresponding wave contact length x 1% = 0. 5 m) . Fig. 4. Simultaneous pressure distribution on the deck ( impulsive type, the corresponding wave contact length x = 0. 93 m) .3. 2 Wave-in-Deck Uplift Loads on the Exposed High-Pile Jetty3. 2. 1 Parametric Analysis of the Eff ect of Geometric and Hydrodynamic VariablesAnalysis of the measured data confirms that the dominant variables influencing the uplift force are wave height, wave length, the clearance of deck, and the width of deck.3. 2. 1. 1 Effect of clearanceDimensionless uplift load on deck . the relative clearance is plotted in Fig. 5.where P 1% denotes the maximum value of the wave-in-deck uplift force per unit length of deck ( with exceedance probability 1% ) , and the direction of that length is perpendicular to the wave propagation direction; H1% is the incident wave height ( with exceedance probability 1% ) ; h is deck clearance; 1% is the maximum free surface elevation above still water level ( associated with H 1% and L s) ; L s is the significant incident wave length ( associated with significant wave period) ; x 1% is the wave contact length ( associated with 1% , L s) ; coefficient 1. 1 is the amplification coefficient attributed to the wave reflection. When x 1% is larger than the width of deck B , it is taken as B; d is water depth.Clear trend of the dimensionless uplift load with the relative clearance can be seen in Fig. 5. It shows that the force increases to the maximum with the increasing clearance and then decreases. It should be noted that the relative clearance corresponding to the peak uplift force is not a fixed value, but within a range from 0. 4 to 0. 8. As the deck rises to a certain level where the wave is below the clearance, the wave crest can not touch the deck and the force becomes zero. It should be noted that the forces experienced by the deck with beams show different behavior which is influenced by the deck configuration. For deck with beams, the clearances relevant to the peak force and the zero force tend to be large and the force decrease slowly with increasing clearance. Owing to the wave reflecting from the downward beams interact with the incoming waves and result in an increase of the wave height. The increase of wave height indicates the dynamics enhancement of the wave field approaching the deck. In addition, ai

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论