




已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . .山东大学课程情况登记表课程编号2004522031课程名称画法几何与工程制图英文课程名称Descriptive Geometry and Hydraulic Engineering Drawing课程类别(水利水电工程专业)开课系所号20开课学期(上、下)本研标志本科生课程学 时90学 分5考试类型(笔试考试无口试)开设日期2002。9结束日期20031课程分类必修课必修主课名称画法几何及工程制图先修课程课内总学时90实验总学时0讲课总学时90上机总学时10CAD总学时0CAI总学时9讨论辅导总学时33设计作业总学时0课外总学时0课外学分0课程负责人赵然航师资队伍张培忠 单国骏 赵然杭基本面向一年级土木工程专业教学方式讲课教 材画法几何与水利工程制图参考书画法几何学 水利工程制图 AUTOCAD 软件应用课程说明本课程属于土建类专业的技术基础课,要求具有一定的立体几何知识,介绍工程图样的绘制原理和制图规则,培养绘图技能,为后续课程的学习和设计打下基础.内容简介(200字左右)主要包括四部分内容:“画法几何”介绍工程图样的绘制原理;“制图基础”介绍关于制图的国家标准及工程图样的表达方法;“专业制图”介绍土建工程制图的相关规定和特有表达方式;“计算机绘图”介绍通用绘图软件的使用。在理论学习的同时进行绘图技能的训练,要求掌握尺规手工绘图和计算机绘图两种技能。备 注绪 论本章要点:一、 工程图样:工程图样,是用来表达工程建筑物的外部形状、内部布置、结构构造、施工要求等的一系列图样。设计人员把他构思设计的工程建筑物,通过工程图样来表达出来,施工人员根据这些图样了解设计者的意图,指导现场施工,从而把设计人员头脑中构思的建筑物变为客观现实。可见工程图样是联系设计和施工两大环节的桥梁,是土木工程不可缺少的重要技术资料,它和文字、数字一样是人类借以表述构思、交流思想的一种重要技术手段。因此,工程图样被喻为“工程界的语言”。二、 本课程的地位和任务:本课程是一门既有理论又有实践的土木工程专业必修的技术基础课,它是关于绘制和阅读工程图样的基本理论和方法的一门学科,它能培养学生的制图技能和空间想象能力、空间构思能力,为学习后续课程、完成课程设计、毕业设计和今后的实际工作打下必要的基础。 本课程的主要任务是: 1、学习各种投影法(主要是正投影)的基本理论及其应用。 2、培养绘制和阅读土木工程图的能力。 3、培养空间想象能力和空间构思能力。 4、学会使用计算机绘图软件绘制工程图样。 5、培养认真负责的工作态度和严谨细致的工作作风。三、本课程的特点和学习方法:工程建筑物与任何物体一样都具有三个向度(又称三维),即人们常说的长度、宽度和高度,而图纸却只有两个向度(又称二维)。要在图纸上用二维的图形准确、清楚地表达三维空间物体,工程中主要采用的是多面正投影的方法。即用物体的一组二维图形共同表达三维形体。通俗地说,就是画图时要把三维形体“分解”成几个二维图形,读图时要把几个二维图形“合成”为一个三维空间形体,这种由“三维”到“二维”、由“二维”到“三维”的转换,运用的是人脑的空间想象和空间思维能力。这是制图课不同于其它课程的最突出特点。本课程的另一特点是:制图时要严格执行各种标准。本课程的学习方法:1. 多看。有意增加头脑中空间形状和位置的表象积累,课堂上仔细观察模型,生活中留意身边建筑物或物体的形状结构 ,在头脑中不断丰富和深化三维空间形象。2. 多想。头脑中反复进行由三维物体到二维图形(投影图)、由二维图形到三维形体的转换训练,逐渐熟悉这种用二维图形表达三维形体的方法。3. 多练。通过书面练习,能够及时发现自己在二维与三维的转换中出现的错误并加以纠正,从而使自己的空间想象力不断提高。4绘图时,应该严格按照标准的规定去做,养成严谨认真的工作作风第二章 投影的基本知识本章重点:投影法概念、正投影的特性、三等规律本章难点:三面投影图画法本章要点:21 投影法概述一、 投影的形成和分类我们对影子进行科学的抽象:假设光线能够透过形体而将四梭台的各个顶点和棱线都在平面P上投落它们的影,这些点和线的影将组成一个比影子更能反映形体形状的图形,见图21(b)。这个图形通常称为形体的投影。光源S称为投影中心,投影所在的平面P称为投影面。经过形体上的点的光线称为投影线,如SA、SB等。通过某点的投影线与投影面的交点,如a、b等,就是该点在该投影面上的投影。把相应各顶点的投影连结起来,即得形体的投影。这种作出形体的投影的方法,称为投影法。 图21 四棱台的影子和投影 图22 平行投影法投影法分中心投影法和平行投影法两大类。1 中心投影法当投影中心距投影面为有限远时,所有的投影线都汇交于一点,这种投影法称为中心投影法。见图21(b)。用这种方法所得的投影称为中心投影。2. 平行投影法当投影中心距投影面为无限远时,所有的投影线均可视为互相平行,这种投影法称为平行投影法。见图22。根据投影线与投影面的倾角不同,平行投影法又分斜投影法,见图22(a),和正投影法,见图22(b)。二、 工程中常用的几种投影图1. 透视投影图透视投影图简称透视图,是按中心投影绘制的,如图23所示。这种图优点是形象逼真,常用作建筑设计方案比较、展览。其缺点是作图复杂,度量性差。2. 轴测投影图轴测投影图简称轴测图,是按平行投影发绘制的,如图24所示。这种图优点是具有一定的主体感,常作为工程辅助图样,其缺点是度量性不够理想,作图较麻烦。3. 多面正投影图多面正投影图简称正投影图,是用正投影法把物体向两个或两个以上互相垂直的投影面进行投影所得的图样,如图25所示。这种图的优点是作图简便,度量性好,在工程中应用最广。其缺点是缺乏立体感,需经过一定的训练才能看懂。4 标高投影图标高投影是一种带数字标记的单面正投影,如图26(a)所示的小山丘的标高投影图,这种图的优点是能表达形状复杂的不规则形体,常用来表达地形面,其缺点是缺乏立体感。 图23透视投影图 图24轴测投影图 图25多面正投影图 图26 标高投影图正投影法是本课程研究的主要对象。以后所说的投影,如无特别说明均指正投影。22 正投影的性质一、 实形性当线段或平面图形平行于投影面时,其投影反映实长或实形。二、 积聚性当直线或平面平行于投影线时(垂直于投影面)其投影积聚为一点或一直线。三、类似性当直线或平面既不平行于投影面,又不平行于投影线时,其投影小于实长或实形或实形,但与原形类似。四、平行性互相平行的两直线在同一投影面上的投影保持平行。五、从属性若点在直线上,则点的投影必在直线的投影上。六、定比性直线上两线段长度之比等于该两线段投影的长度之比。两平行线段的长度之比等于它们的投影长度之比。 以上性质,虽以正投影为例,其实适用于平行投影。图27 正投影的性质23 三面投影图一、 三面投影体系一面投影不能确定物体的形状,如图28所示。两面投影有时也不能唯一确定物体的形状,如图29所示,两物体A和B在H 面、V面上的投影都相同,只根据这两面投影无法确定所表达形体是A还是B,还是其它形状的物体。 图28 物体的一面投影 图29 物体的两面投影 图210 三投影面体系通常情况下,三面投影可以确定物体的形状,因此我们设置三个互相垂直的投影面,形成一个三投影面体系,如图210所示,其中水平放置的投影面称为水平投影面,用字母“H”表示,简称H面;正对着观察者的投影面,称为正立投影面,用字母“V”表示,简称V面;在观察者右侧的投影面,称为侧立投影面,用字母“W”表示,简称W面。三投影面两两相交构成三投影轴OX、OY和OZ。三轴的交点O称为原点。二、 三面投影图的形成为了使物体的表面反映实形,将被投影的物体置于三投影面体系中时,尽量使物体的表面平行于投影面,如图211(a)所示,安放时让物体的前、后面平行于V面;上、下面平行于H面,左右面平行于W面。然后用三组分别垂直于三个投影面的投影线对物体进行投影:由上向下投影,在H面上所得的投影图,称为水平投影图,简称H面投影;由前向后投影,在V面上所得投影图,称为正面投影;简称V面投影;由左向右投影,在W面上所得的投影图,称为侧面投影图,简称W面投影。国家标准规定:在正投影图中,依投影方向凡可见的轮廓线画粗实线,不可见的画虚线。如图211(a)中W面投影中虚线ab,为不可见的轮廓线AB的投影。图211 三面投影图的形成和展开图212 三面投影面为使三面投影图处于同一个图纸平面上,我们把三个投影面展开。如图211(b)所示,固定V面,让H面绕OX轴向下旋转90,W面绕OZ轴向右旋转90,从而都与V面处在同一平面上。这时Y轴出现两次,一次随H面转至下方与Z轴在同一铅垂线上,标以YH,另一次随W面转至右方,与X轴在同一水平线上,标以YW。如图212(a)所示。实际作图时,只需画出物体的三个投影而不需画投影面边框线,如图212(b)所示。能熟练作图后,三条轴线亦可省去。三、 三面投影图的对应关系1. 度量对应关系三面投影图是在物体安放位置不变的情况下,从三个不同方向投影所得到的,它们共同表达同一物体,因此它们之间存在着紧密的关系:V、H两面投影都反映物体的长度和物体到W面的距离,如图212(a)所示,因此画图时,要保证正面投影和水平投影左右对齐,如图212(b)所示。同理,H、W两面投影,V、W面投影,也有类似关系。总结起来,可得三面投影图的度量对应关系如下:(1) 正面投影和水平投影的长度相等,并且互相对正;(2) 正面投影和侧面投影的高度相等,并且互相平齐;(3) 水平投影和侧面投影的宽度相等。简单地说就是:长对正,高平齐,宽相等。这种关系常称为三面投影图的投影规律,简称三等规律。应该指出:三等规律不仅是用于物体总的轮廓,也是用于物体的局部细节。2. 位置对应关系图213 投影图和物体的位置对应关系从图213中可以看出:物体的三面投影图与物体之间的位置对应关系为:(1) 正面投影反映物体的上、下、左、右的位置;(2) 水平投影反映物体的前、后、左、右的位置;(3) 侧面投影反映物体的上、下、前、后的位置。尤其要注意:水平投影和侧面投影中远离正面投影的一边都是物体的前方。第三章 点的投影点是最基本的几何元素。一般用大写字母表示空间的一个点,如点A、点B等。一、 定义通过空间一点向投影面作垂线,垂足称为点在该投影面内的投影。用直径0.51mm的小圆圈或黑圆点表示点的投影,并标记相应的小写字母。如点A的投影为a,点B的投影为b等。二、 点的三面投影1 设立V、H、W三个互相垂直的投影面。2 由空间一点A分别向投影面V、H、W作垂线,垂足分别标记为a、a、a”,称为点A的正面投影、水平投影和侧面投影,或简称为V投影、H投影和W投影。3 点的投影与坐标的关系将V、H、W看作三个坐标面,点A到W、V、H三个坐标面的距离Aa”、Aa和Aa分别称为点A的x、y、z坐标。Aa、Aa”和Aa是三条互相垂直的直线,它们两两相交确定了三个互相垂直的平面,这三个平面与V、H、W一起围成了一个“长方体”。平面Aaa与X轴的交点记为ax,平面Aa”a与Y轴的交点极为ay,平面Aaa”与Z轴的交点记为az。根据长方体各表面及棱线之间的关系(平行、垂直)可知:Aa”=aay=axo=aaz=xAa=aax=ayo=a”az=yAa=aax=azo=a”ay=z由上述关系看出,点的每个投影反映点的两个坐标。4V、H、W三投影面的展平V面不动。H面绕X轴向下转90与V面重合。 W面绕Z轴向右转90与V面重合。5展平后三面投影的位置关系 V投影与H投影的连线aaOX, V投影W投影的连线aa”OZ, H投影与W投影有相同的Y坐标。6上述关系和指出:点在互相垂直的两投影面内的投影,当两投影面绕其交线展平到同一个平面内时,两投影的连线与轴(交线)垂直。7两个互相垂直的投影面将空间分为四个“象限”(见课本P37);三个互相垂直的投影面将空间分为八个“分角”(见课本P39)。8特殊位置点的投影 点在某投影面内。 点在某投影轴上。9重影点 若两点在某一投影面内的投影重合,则称它们为相对于该投影面的“重影点”,其可见性根据它们在另外两个投影面内的投影来判断。可将不可见点的投影标记加小括号表示。10两点的相对位置 x坐标大者为左,小者为右; y坐标大者为前,小者为后; z坐标大者为上,小者为下。三、 举例1 课本P40例3-1,由点的已知两投影求作第三投影。2 课本P40例3-2,根据已知坐标画出点的投影图。3 课本P40例3-3。作业: 习题集P8、P9、P10。第四章 直线的投影一、 直线的投影特点直线的投影一般仍为直线“投射面”与投影面的交线。直线与投影面垂直时,其在该投影面内的投影积聚为一点。连接AB直线上任意两点的“同面投影”,即得直线在该投影面内的投影。二、 各种位置直线的投影与某投影面平行的直线仅与V、H、W中的某一投影面平行而与其它两投影面倾斜。 V,正平线; H,水平线; W,侧平线。投影特点:在所平行的投影面内的投影反映实长,且投影与投影轴的夹角反映了直线与另外一投影面的夹角。另外两投影分别平行于相应的投影轴。直线与投影面V、H、W的夹角分别用记号、表示。与某投影面垂直的直线与另外两个投影面必平行。 V,正垂线; H,铅垂线; W,侧垂线。投影特点: 在所垂直的投影面内的投影积聚为一点。 另外两投影均反映实长,且垂直于相应的投影轴。一般位置直线与V、H、W三个投影面均倾斜的直线,亦称“倾斜线”。投影特点: 各投影均为与投影轴倾斜的直线。三、 “一般位置直线”的实长及对投影面的夹角直角三角形法 对H投射面内的“直角三角形” 斜边实长。 两直角边水平投影长 对H面距离之差Z(从V或W投影中量出) 角斜边与“水平投影长度边”的夹角。 对V投射面内的“直角三角形” 斜边实长。 两直角边V面投影长 对V面距离之差Y(从H或W投影中量出) 角斜边与“V面投影长度边”的夹角。 对W投射面内的“直角三角形” 斜边实长。 两直角边W面投影长 对W面距离之差X(从H或V投影中量出) 角斜边与“W面投影长度边”的夹角。 举例 求线段的实长及其、角。 课本P48图44。四、 直线上点的投影 “从属性” 课本P49图46。 定比性 例:课本P50图48。 例:课本P50图49。 作业: 习题集P11、P12、P13、P14(去掉415)。第四章 直线的投影(续)一、 两直线的相对位置:平行、相交、交叉 两直线平行各组“同面投影”分别平行。 对于“一般位置直线”:两组“同面投影”分别平行两直线平行。 对于某投影面的平行线:两组“同面投影”分别平行(包括它们所平行的投影面内的投影)两直线平行。对于某投影面的平行线:两组“同面投影”分别平行(但不包括它们所平行的投影面内的投影),则两直线是否平行,应作进一步的判断。 例:课本P52图412。 两直线相交各组“同面投影”分别相交,且各“同面投影”的交点符合同一点的投影规律(因为它们是空间同一点-两直线交点的投影)。 根据投影来判断两条一般位置直线是否相交,只需两组“同面投影”就可做出判断;若两直线中包含某投影面的平行线,则给出的两组“同面投影”包含直线在该投影面内的投影时,既可根据两投影做出判断,否则应作进一步的判断。请参考课本P53图414。例:课本P53图415。 交叉两直线交叉二直线的投影,不具有平行或相交二直线的投影特点。交叉二直线的各“同面投影”可能都有交点,但各交点的位置关系不符合同一点的投影规律;交叉二直线的各“同面投影”可能有一组或两组平行,但不可能V、H、W投影都分别平行。二、 直角投影定理空间两直线互相垂直,且至少有一条平行于某投影面,则它们在该投影面内的投影也互相垂直。两直线交叉垂直时,直角投影定理仍成立。例:课本P56图418,判断两直线是否垂直。例:课本P56图419,求点到直线的距离。作业: 习题集P15、P16。第五章 平面的投影一、 平面的表示法(课本P57、P58) 不共线的三个点; 一直线及线外一点; 平行二直线; 相交二直线; 任一平面图形; 迹线表示法(课本P58) 迹线-平面与投影面的交线。 命名-用大写字母表示平面,如平面P、平面Q等。平面P与V、H、W的交线分别记为PV、PH、PW,称为平面P的正面迹线、水平迹线、侧面迹线。 两迹线相交与轴上同一点,分别记为Px、Py、Pz。用两条迹线(相交于一点)可表示一个平面(两相交直线表示的平面)。用迹线表示平面时,只画出迹线与本身重合的那个投影,另一投影与投影轴重合,不再画出。二、 各种位置平面的投影 平行于某投影面的平面(课本P59,此类平面与另外两投影面均垂直)V,正平面;H,水平面;W,侧平面。投影特点: 在所平行的投影面内的投影反映实形; 另外两投影积聚为与轴平行的直线。 用迹线表示某投影面的平行面时,一般仅画出一条迹线-所垂直的投影面内的迹线。 垂直于某投影面的平面(课本P60,此类平面与另外两投影面均倾斜)V,正垂面;H,铅垂面;W,侧垂面。投影特点: 在所垂直的投影面内的投影积聚为一直线,该直线与投影面内两轴分别形成一夹角,每一夹角反映了平面与另一投影面的夹角; 另外两投影均为原图形的“类似形”。 用迹线表示某投影面的垂直面时,一般仅画出一条迹线-所垂直的投影面内的迹线。 平面与H、V、W的夹角亦分别用、表示。 一般位置平面-与H、V、W均倾斜的平面投影特点: V、H、W投影均为原图形的“类似形”,任一投影均不能直接反映出平面与某投影面的夹角,也不能直接反映出平面的实形。三、 平面内取点取线 几何条件(课本P61) 若点在平面内一直线上,则点在该平面内。 若直线上有两点在平面内,则直线在该平面内;若直线上有一点在平面内,且直线与平面内一直线平行,则直线在该平面内。 例:课本P61例51,完成平面的投影。 例:课本P61例52,判断点是否在平面内。 包含直线或点作平面 包含一般位置直线可作一般位置平面、投影面的垂直面; 包含投影面的垂直线可作投影面的垂直面、投影面的平行面; 包含投影面的平行线可作投影面的垂直面、投影面的平行面、一般位置平面。 平面内与投影面平行的直线(课本P63) 具有投影面平行线的投影特点; 符合直线在平面内的几何条件。 平面内对投影面的最大斜度线(课本P63) 过平面内一点A,可在平面内作出无数条直线,其中有一条直线对H(V、W)面的夹角最大,称为平面内对H(V、W)面的最大斜度线,该直线垂直于平面内的水平线(正平线、侧平线)。 P平面内对H(V、W)面的最大斜度线的(、)角,等于该平面的(、)角。 例:课本P64例53,求平面的角。 作业: 习题集P17、P18、P19。第六章 直线与平面、平面与平面的相对位置一、 直线与平面的相对位置 直线与平面平行 几何条件(课本P65) 若直线平行于平面内一直线,则直线与平面平行。 例:课本P66图62 检验直线与平面是否平行; 过已知点作水平线与已知平面平行。 特殊位置的线面平行-直线与投影面的垂直面平行 例:课本P66图63。 直线与平面相交 当直线的某投影有积聚性时,可直接判断可见性。 例:课本P67图65。 当平面的某投影有积聚性时,亦可直接判断可见性。 例:课本P68图66。 当直线与平面的投影均无有积聚性时,用“辅助直线法”求交点,利用重影点判断可见性。 直线与平面垂直 线面垂直的几何条件(见课本P70图69) 例:课本P70图610。 过已知点作已知平面的垂线。 例:课本P71图611。 判断线面是否垂直。 特殊位置的线面垂直 平面投影面的平行线(课本P72图612)。 例:课本P72图613。 求点到铅垂面的距离。二、 两平面的相对位置 面面平行 面面平行的几何条件-两平面内各有一对相交直线且对应平行。 例:课本P74图615。 检验两已知平面是否平行; 过点作平面与已知平面平行。 特殊情况下的面面垂直 例:课本P74图616 两投影面的垂直面互相垂直。 面面相交 特殊位置的面面相交 两平面垂直于同一投影面 例:课本P75图617,求两平面的交线。 相交的两平面中,其中一个平面的投影有积聚性。这种情况下要注意:应将交线画在两平面投影的“公共范围”之内。可见性根据平面的积聚性投影进行判断。 例:课本P76图618,求两平面的交线。 例:课本P77图619,求正平面与一般位置平面的交线。 通过此例认识“全交”与“半交”的概念。 例:课本P78图620,用“辅助平面法”求一般位置的线面相交。 一般位置的面面相交 线面交点法 例:课本P78图621,求两个一般位置平面的交线。 三面共点法(此法用于两个平面的投影分离时) 例:课本P79图622,求两个一般位置平面的交线。 两平面垂直 面面垂直的几何条件-若平面P包含平面Q的一条垂线,则平面P平面Q。 例:课本P80图625,作已知平面的垂直面。 特殊位置的面面垂直 例:课本P81图626, 作业: 习题集P20、P21、P22。第六章(续) 点、线、面综合解题 综合题目的一般分类: 定位问题:求交点、交线、作公垂线等。 度量问题:求实长、夹角、距离等。 例一:课本P84图628,求点到直线的距离。 步骤: 过点作平面与已知直线垂直; 求垂足(求线面交点); 用“直角三角形法”求垂线实长。例二:课本P84图629,求作直线满足下述条件: 与AB直线相交; 与CD直线相交; 与EF直线平行。 步骤: 包含AB作平面P与直线EF平行; 求直线CD与所作平面P的交点M; 过点M作直线与EF平行,所作直线即为所求。例三:课本P85图630,求一般位置直线和一般位置平面的夹角。 步骤: 过已知直线的端点A作已知平面的垂线AM(适当选取点M,使BM实长为已知); 求出BAM的实形,所求夹角等于90-BAM。例四:课本P86图631,完成矩形的水平投影。 步骤: 作AB直线的垂直面AEF; 求出AEF平面内AD边的V面投影ad; 根据平行关系完成全图。例五:课本P87图632,按下述要求画等腰三角形: 底边为已知直线AB; 顶点在已知直线ED上; 步骤: 作已知直线AB的垂直平分面P; 求已知直线ED与所作平面P的交点C; 画出ABC, ABC即为所求作的等腰三角形。 例六:课本P88图633,求两交叉直线的公垂线的投影及实距。 步骤: 包含已知直线CD作平面P与已知直线AB平行; 过点A作平面P的垂线并求出垂足M; 过点M作直线MN与直线AB平行(直线AB必在平面P内); 求出直线MN与直线CD的交点K; 过点K作直线CD的垂线,并求出该垂线与直线AB的交点L(l、l); 求直线KL的实长。例七:课本P89图634,在已知平面内作直线与另一已知平面平行。 步骤: 求作两已知平面的交线; 过已知点作直线与所求交线平行。作业: 习题集P21、P22。第十一章 立体与立体相交本章重点:相贯线的性质、相贯线形状分析本章难点:相贯线的求法本章要点:基本概念:相贯: 两立体表面相交,又成为两立体相贯。相贯线:两立体相贯,表面形成的交线,成为相贯线。相贯点:相贯线上的点,称为相贯线。相贯线的基本性质:1 相贯线是相交两立体表面的公有线。相贯线上的点,既在甲立体的表面上,也在乙立体的表面上。2 相贯线是相交两立体表面的分界线。相交的甲、乙两立体表面沿相贯线分开。相贯的分类及其相贯线的形状:1 一个立体全部贯穿另一个立体的相贯,称为全贯。全贯时,通常有两组封闭的相贯线。如图11-1(a)所示。2 当两个立体相互贯穿时,称为互贯。互贯时,通常有一组封闭的相贯线。如图11-1(b)所示。3 相贯线一般为封闭形状。当相贯两立体有共同底面时,相贯线不封闭。如图11-1(c)所示。图111 两立体相贯的形式111 两平面立体相交一、 基本概念两平面立体相贯时,相贯线一般情况下为空间折线,特殊情况下为平面折线。二、 相贯线的作法依次求出一个立体上参与相交的所有平面,与另一个立体表面相交的截交线(一般可利用积聚性投影),按一定的顺序连结,即为相贯线。三、 求解相贯线步骤 以图11-2(a)中四棱柱和四棱台相贯为例,求其相贯线的三面投影。1、 相贯线形状分析 两立体全贯,相贯线为两组封闭折线。每组有六段折线组成。将各段起始点注上字母,如图(b)所示。2、 求出各段折线3、 判断相贯线的可见性只有当相贯线段所在的两立体的两个楞面同时可见时,它才是可见的,画成实线。否则都不可见,画成虚线。4、 完成投影将参与相交的棱线画至相应的相贯点,并判别可见性;不参与相交的棱线判别可见性。图112 四棱柱与四棱台相贯四、 同坡屋面1、基本概念:在坡屋面中,如果每个屋面对水平面的倾角相同,而且房屋四后的屋檐高度相同,这种屋面称为同坡屋面。如图113所示为同坡屋面的各部分名称。2、同坡屋面的投影特性:(1) 屋檐平行的两屋面必交成平脊。它的H面投影必平行与屋檐的H面投影,且与两屋檐的H面投影等距。如图114所示。(2) 屋檐相交的两屋面,必相交成斜脊或天沟。其H面投影为两屋檐的H面投影的角平分线。如图115所示。(3) 屋面上如有两条屋面交线交于一点,至少还有第三条交线通过该交点。如图115所示。图113 同坡屋面 图114 两坡屋面 图115 四坡屋面3、求同坡屋面投影的步骤: 以图116(a)为例,一直同坡屋面四周屋檐的H面投影及各屋面倾角45,试作出该同坡屋面的H面投影及V面投影。(1) 在H面投影中,以屋檐编号,作出相交屋檐的角平分线,并用相关屋面的编号表示,如图(b)所示。(2) 根据同坡屋面的投影特性,完成整个屋面的H面投影。如图(c)所示。(3) 根据屋面的倾角,完成屋面的V面投影。如图(c)所示。图116 作同坡屋面的投影112 平面立体与曲面立体相交一、 基本概念平面立体和曲面立体相贯,相贯线一般情况下为若干段平面曲线组成的空间封闭线,特殊情况下相贯现有直线部分。二、 相贯线的作法依次求出平面立体上参与相交的所有平面,与曲面立体表面相交的截交线(一般可利用积聚性投影),按一定的顺序连结,即为相贯线。三、 求解相贯线步骤 以图11-7(a)中四棱柱和圆球相贯为例,求其相贯线的三面投影。1、 相贯线形状分析 四棱柱和圆球具有相同的前后对称面和左右对称面,所以它们的相贯线前后左右都对称。四棱柱的四个棱面都与球面相交,产生四段圆弧形截交线,这四段圆弧形截交线首尾相连,即为相贯线。2、 求出各段截交线,如图(b)所示。3、 判断相贯线的可见性,完成投影。如图(c)所示。图 117 平面立体与曲面立体相贯113 两曲面立体相贯一、 基本概念两曲面立体相贯,相贯线一般情况下为封闭的空间曲线。特殊情况下为平面曲线或直线。二、相贯线的作法组成相贯线的所有点,均为两曲面立体表面的公有点,即相贯点。求出一系列相贯点,用光滑曲线依次连结,即得相贯线。求相贯点时,应先求出相贯线上的特殊点,即最前、最后、最左、最右、最高、最低及轮廓线上的点。再求若干一般点。1、 表面取点法: 当曲面立体表面在某投影面的投影有积聚投影时,则相贯线上各相贯点的投影必在积聚投影上,其余投影可根据曲面立体表面取点的方法确定。 以图118(a)中两轴线正交圆柱为例,求作相贯线的三面投影。步骤如下:(1) 投影分析两圆柱相贯线前后对称。H面、V面都有积聚投影,相贯线两投影已知。(2) 求特殊点,如图(b)所示的、点。(3) 求一般点,如图(b)所示的、点。(4) 连点并判断可见性,如图(b)所示。图 118 轴线正交的两圆柱相贯2、 辅助平面法: 作辅助平面同时与两曲面相交,它们截交线的交点即为相贯点,求出足够的相贯点依次连线,即为相贯线。以图118(a)所示的轴线正交的圆柱和圆台相贯为例,求作相贯线的三面投影。 步骤如下:(1) 投影分析 相贯线前后对称。W面都有积聚投影,相贯线已知。标出相贯线上的特殊点1、2、3、4、5、6。其中、两点为最右点。(2) 求特殊点,分别过1、2、3、4、5、6作水平辅助平面M、P、N、Q,求出、点其他投影,见图(b)。(3) 求一般点,过7、8作水平辅助平面R,求出、点其他投影,见图(b)。(4) 连点并判断可见性,完成投影。如图(b)所示。图 119 轴线正交的圆柱和圆台相贯图 1110 轴线斜交的两圆柱相贯运用辅助平面法求解相贯线,辅助平面的选择至关重要。辅助平面与两曲面立体的截交线的投影应为易绘制的圆或直线。如图1110(a)所示的轴线斜交的两圆柱相贯,应选择水平面最为辅助平面,其余两圆柱的截交线都是直线,作图过程见图(b)。3、 辅助球面法:原理: 当球面与回转面相交,球心又在回转面的轴线上时,.它们的表面交先是垂直与回转轴的圆。如图1111所示。图 1111 球与回转面的相贯线为圆采用辅助球面法的条件:1、 两曲面体必须是回转体,从而使他们与辅助球面的交线都是圆。 2、 两回转体的轴线必须相交,交点可作为辅助球面的求心。3、 两回转体的轴线必须同时平行预某一投影面,从而使交线(圆)在该投影面上的投影为直线。以1112 (a)所示的圆台与圆柱正交为例,求其H面投影和V面投影。步骤如下: (1)、投影分析 (2)、定球心 (3)、确定最大半径R1和最小半径R2 (4)、求相贯线上的点(5) 、连点并判断可见性,见图(b)图 1112 球面法作圆台与圆柱的相贯线4、 两球面立体相贯的特殊情况:(1) 相贯线是直线 两圆柱的轴线平行,相贯线是直线,见图1113(a)。 两圆锥共顶时,相贯线是直线,见图1113(b)。(2) 相贯线是平面曲线 凡同轴回转体相贯时,相贯线是圆,见图1114。 当相交两立体的表面为二次曲面(如圆柱面、圆锥面等),且公切于同一球面时,其相贯线为两个椭圆。见图1115。图 1113 相贯线是直线图 1114 相贯线是圆图 1115 相贯线是椭圆图1116 相贯线为椭圆的应用实例第十二章 轴测图121 轴测图的基本知识轴测投影是单面平行投影,其优点是富有立体感,易于读图。其缺点是度量性差,作图较复杂。所以,工程上常作为多面正投影图的辅助图。一、 轴测图的形成要得到轴测投影图,在平行投影法中通常采用下述两种方法:1 使物体长、宽、高三个方向都与投影面P倾斜,且投影方向S垂直于投影面。2 物体的长、宽、高中的两个方向仍像正投影那样平行于某投影面,但投影方向S倾斜于投影面P。这种将物体和确定其空间位置的直角坐标系,按平行投影法一并投影到一个选定的平面上,所得到的图形称为轴测投影图,简称为轴测图。二、 轴间角和轴向变形系数1 轴间角确定物体空间位置的坐标轴OX、OY、OZ在轴测投影面上的投影O1X1、O1Y1、O1Z1称为轴测轴。相邻两轴测轴之间的夹角X1O1Y1、X1O1Z1和Y1O1Z1称为轴间角。三个轴间角之和为360。2 轴向变形系数沿轴测轴方向的线段与沿直角坐标轴方向相应线段长度之比称为轴向变形系数。三个轴向变形系数分别用p、q、r标记:即X轴向变形系数。Y轴向变形系数Z轴向变形系数轴间角和轴向变形系数是画轴测图的主要依据。三、 轴测图的投影特性由于轴测投影是用平行投影方法获得的,因此轴测投影具备下列平行投影的特性:1 平行性:空间物体上相互平行的直线,在轴测投影图中仍然相互平行。2 定比性:空间形体上两平行线段或一条直线上的两线段长度之比值,在轴测图上保持不变。因此。物体上凡是平行于坐标轴OX、OY、OZ的线段,其轴测投影都相应地平行于轴测轴O1X1、O1Y1、O1Z1,并且有相同的轴向变形系数。所以,在画轴测图时,只能沿平行于轴测轴的方向和按轴向变形系数来确定物体的长、宽、高三个方向的线段。这就是“轴测”二字的由来。四、 轴测图的分类根据投影方向S和轴测投影面P的相对关系,轴测图可分为两类:正轴测图S垂直于P。斜轴测图S倾斜于P。据轴向变形系数的不同,又可分为三种:1 p=q=r,称为正(或斜)等测图,简称正(或斜)等测。2 p=qr,或p=rq或pq=r称为正(或斜)二等测图,简称正(或斜)二测。3 pqr称为正(或斜)三测图,简称正(或斜)三测。由于三测图作图甚繁。很少采用。土建工程中常用的轴测图有正等测、斜二测和斜等测三种。122 正等测图一、正等测图的轴间角和轴向变形系数 正等测图是使三坐标轴与投影面P成相等的倾角,所以各轴向变形系数和轴间角也都相等。即:轴间角X1O1Y1、=X1O1Z1=Y1O1Z1=120轴向变形系数p=q=r=0.82为了简化作图,常把轴向变形系数取为1,即凡与各轴平行的线段均按1:1来量取。这样画出的轴测图,各轴向长度增大为:1/0.821.22二、正等测图的画法画轴测图常用的方法有坐标法、切割法、端面法、叠加法等,而坐标法是基本方法,其它方法都是以坐标法为基础的。 墩身的正等测图(a)投影图 (b)、(c)、(d)作图过程木榫头的正等测图(a)投影图 (b)、(c)、(d)作图过程这种先画出完整的基本形体,然后按视图切去多作的形体,从而得到所画物体的轴测图的方法,称为切割法。 条形基础的正等测图(a)投影图 (b)、(c)、(d)作图过程本例要点在于先画形体一个端面的轴测投影,而后根据另一方向的尺寸画出整个形体的轴测投影图。这种先作出物体平行于其坐标面的端面的轴测图,然后画出平行于另一轴测轴方向的线段的轴测图的方法称为端面法。这对于画柱类形体的轴测图是极为方便的。 挡土墙的正等测图(a)投影图 (b)、(c)、(d)作图过程本例说明了画组合体的轴测图,可将形体分为几个部分,画出各部分的轴测图。画图时应当特别注意各部分位置的确定。123 斜轴测图一、 正面斜二测图1 轴间角和轴向变形系数轴间角X1O1Z1=XOZ=90,轴向变形系数O1X1/ OX= O1Z1/ OZ=1。至于轴间角X1O1Y1和OY轴向变形系数则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长短桩复合地基在竖向荷载作用下的承载特性研究
- GhXTH22在棉花冷胁迫中的调控机制解析
- 课题申报书:新时代大学生思想动态和行为特征的数字画像与智能监测研究
- 石英玻璃电子管外壳企业县域市场拓展与下沉战略研究报告
- 台式电动旋盖机企业数字化转型与智慧升级战略研究报告
- 成品油管企业数字化转型与智慧升级战略研究报告
- 咖啡研磨机企业ESG实践与创新战略研究报告
- 脊髓神经环路重建-全面剖析
- 节能型家电技术研究-全面剖析
- 面向服务的Android模块化架构-全面剖析
- 交房通知短信(5篇)
- 高中英语 A precious family dinner说课课件
- 工艺联锁图识读
- 2023年中南大学湘雅二医院康复医学与技术岗位招聘考试历年高频考点试题含答案解析
- GB/T 21567-2008危险品爆炸品撞击感度试验方法
- 卫生人才培养方案计划
- DB64-T 1684-2020 智慧工地建设技术标准-(高清可复制)
- 婚丧嫁娶事宜备案表
- “三级”安全安全教育记录卡
- 风生水起博主的投资周记
- 赛艇赛事活动推广方案
评论
0/150
提交评论