翻译下行遥测系统毕业论文.doc_第1页
翻译下行遥测系统毕业论文.doc_第2页
翻译下行遥测系统毕业论文.doc_第3页
翻译下行遥测系统毕业论文.doc_第4页
翻译下行遥测系统毕业论文.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

文献名称(中文) 下行遥测系统文献名称(外文)DOWNLINK TELEMETRY SYSTEM作者: Canadian Intellectual Property Office起止页码:第一页第八页出版日期(期刊号):CA02538303 A1 2002/08/22出版单位:加拿大知识产权办公室外文翻译译文: 摘要:下行遥测系统,提供改进的仪器和方法,利用压力脉冲从地面设备到井下装备传达指令。该装置包括一个地面发射机产生压力脉冲,控制系统,井下接收机为接收和解码脉冲。在操作中,旁路阀打开和关闭,产生了一系列井下接收器接收和解码的压力脉冲。该方法显著降低下行通信中断钻井和中断下行信号的发生等,使上行通信与之同步,如果以不同的频率发送上行脉冲,双向通信是可以实现的。遥测方案和算法为滤波和解码下行信号提供一个创造性的方法。该算法确定脉冲波峰和解码一个指令的间隔之间的时间间隔。该算法还包括错误检查,核实该指令正确地被井下接收。下行遥测系统相关应用的交叉参考这个应用程序是一个加拿大申请编号为2438139的分区申请的 , 2月13日,2002年,要求优先使用权属于美国 ,申请编号09/783,158优先,申请于二月14,2001声明不适用于关于联邦资助的研究或开发的发明领域发明涉及对地球地面一般控制设备和地下钻装备指挥井下仪器的功能之间的通信。特别是,本发明涉及通信指令通过压力从地面发射器发出的脉冲信号不中断钻井钻具组合,特别是在井下接收器用一种算法仪器检测压力脉冲的方法来指示井下设备,尤其是在地面设备和井下装备之间以一个相对快速的通信速率为实现双向通信设备和方法进行解码的压力脉冲发明背景油气钻井作业,利用对地球地面和地下设备(如钻井钻探设备和衡量性能的钻井设备),进行地层评价的工具的控制和数据采集。长期以来,人们一直公认为在石油和天然气行业中地面设备和地下钻探装备之间的交流是可取和必要的。下行信号,是从地面设备到钻具组合的通信,通常是以提供执行指令到钻井装备的命令的形式。例如,在定向钻井作业中,下行信号可能指示钻探设备改变钻头的方向到一个特定的角度或更改的工具面方向。上行信号,或钻装备和地面设备之间的通信,通常在井下钻井钻探中进行验证下行的指示和通信测量是为操作员提供有价值的信息数据。下行发送信号的一个常用的方法是通过泥浆脉冲遥测。当钻井时,流体泵能使井下接收器包括井下钻具组合可以通过仪表测量流体的压力或流量等。泥浆脉冲遥测是一个通过创造一系列钻井液有关的的瞬间压力变化或脉冲的方法,发送使之可以被接收器检测到的信号。 压力脉冲的持续时间,振幅,脉冲之间的时间和模式,为下行信号检测井下接收器,然后作为一个特定的指令送到井下装备。通过从地球地面发射泥浆脉冲信号遥测地下设备的方法是已知的,已在过去熟练的掌握。最常用的方法是中断钻探时产生压力脉冲或钻井泵以特定频率循环的开启和关闭造成压力脉冲穿过井下钻柱指示井下装备。另一种方法,结合钻柱旋转的循环泵。从地面发出的指令,使井下装备中断钻探,底部钻探工具升空,循环泵开启和关闭。然后钻头以给定的速度超过一定期限的旋转,井下装备包括一个转速传感器来测量旋转。以这种方式,指令传达到井下装备。这些传输方式有几个缺点。最显著的缺点是钻探时必须暂时中断每一个信号被送到井下的时间。因此,信号被送到井下只是定期而非连续的,这样的话可以让钻井作业继续进行。在定向钻井时,这是不可取的,因为正在钻探的钻井工具只能定期调整,造成不必要的蛇状或曲折的钻孔。此外,这些方法本身慢,因为它需要时间来启动和停止钻井作业,虽然我们的目标是通过发送一组信号,通常的信号必须反复指示井下装备,井下接收第一次收到的指令并不总是正确的。最后,这种方法也导致了不必要的磨损和伤害泵及相关设备。已经开发了经过改进的仪器,从地球地面的指令信号传输到井下设备而不要启动和停止钻井系统泵。例如,美国专利5113379(“379专利”),特此通过引用这方面各个功能,参考本文,介绍负压脉冲阀的顺序操作,钻井液流体的流量从井下的泵绕过。绕过流体返回到泥坑,冲击压力吸收器采用背压限制通过阀门的流体流动,以防止在泥坑回流管的反压力。该系统具有的缺点是不提供通过旁路行调整流量。这样的流量调整生产特定振幅的脉冲,并确保旁路流量并不影响钻井作业停滞,以这样一个方式的钻井液流量是可取的。379专利介绍另一种方法,用于通过打开和关闭一个阀门产生压力脉冲,在沟通蓄水池有不同的流体压力与钻井系统泵压力。再次,这种脉冲系统通过脉冲的仪器不提供流量控制系统,它具有更复杂的设备要求379专利中所描述的另一种方法仍需要连接到钻井系统引入液柱正压脉冲马达驱动泵。尽管这种脉冲系统可以根据电机的转速,流量的变化,对井下设备进行调整。但对设备的要求是更复杂,更昂贵,并且需要更多的维护。因此,以提供一个发射系统脉冲信号到井下它是可取的,具有操作简单,价格低廉,易于维护设备,并提供了一种方法来调节旁路流体流量。欧洲专利EP0744527(“527应用”),贝克休斯公司,其中的内容提出纳入本协议,公开了一种简单的旁路系统,由气动阀,孔板产生负压脉冲。孔口限制通过旁路的流量,限制流量可以进一步调整通过阀门本身的流量。此外,气门驱动的速度是由可控的脉冲信号的频率改变。虽然527应用中所披露的旁路系统为旁路流量控制提供了一个为孔口,孔板作为必要的调整限制流量是不能改变的。也就是说,为使井钻得更深,更高的钻井流量是防止延时钻具所必需的。通过钻柱的变化中的流动阻力也可能引起的变化,例如,喷气机位的变化,钻具长度的增加,并在井底装备孔洞的变化。如流量,通过钻柱的流动阻力变化,需要在旁路流动阻力的变化来维护所需的旁路流量。因此,它在为调整在该领域的旁路流量提供设备是可取的。通过阀门调节旁路流量限制流量不是最好的,因为阀门的内部会被侵蚀,而且阀门更换昂贵。因此,它包括一个低成本的是可取的,牺牲旁路流量节流,很容易在现场调整旁路流量出现多变。此外,在527应用所披露的发明提供没有旁通阀上游的组件,以反映正脉冲创建的每个阀门关闭的时间。如果同时进行这种安排将构成麻烦,需要双向沟通(上行和下行),因为阀门的正脉冲将前往上游的主要管道,并可能干扰或取消上行脉冲。因此,最好是安排同时进行的这样一种方式,双向通信提供脉冲发射设备是可以实现的。一旦在地面上产生压力脉冲代表的一定指令,并传送到了井下,在井下装备一个接收器处理这些信号将进行解码的指令分发到适当的井下工具。接收器将检测与下行信号的泵和钻井作业相关的噪音。因此,在井下接收的下行信号解码通常包括数字滤波步骤来消除噪声和使用相匹配的压力在井下装备控制器预先设定的一个特定的指令脉冲序列检测算法。379专利详细介绍了上行脉冲的分析方法。数据首先被过滤和交叉去除相关泵压泵噪声和随机噪声。然后对每个脉冲的形状或持续时间进行分析,以确定与该脉冲相关的数据值。关于下行信号,命令信号被限制到一个特定的时间间隔的窄频带。因此,接收系统的相关数据是频段和接收到的信号的接收时间。信号通过一个锁定放大器滤波器分离的窄带干扰噪声的频率信号。然后信号传递到一个放大器和脉冲发生器,它送入步进开关,最好是电子线圈,加强对各种仪器的功能开关。这些上行和下行遥测系统采用过滤器和信号分析算法,但上行系统是显着更复杂。上行传输据说涉及到大量的数据,必须迅速,而下行传输被认为涉及小批量数据,可以在一个较长的时间框架分析数据分析。例如,规定的上行信号的数据频率是每分钟约1位,而下行信号规定的数据传输速率可达每分钟120位,因此需要较少的发射功率。此外,井下噪声被认为是低于地面附近的噪音,使过滤功能是不复杂的井下。然而,考虑到复杂的调制解调器钻井装备,特别是在定向钻井应用的功能,快速数据上行和下行通信速率是不可取的。此外,它提供一个复杂的下行算法能够快速,准确的信号解码,包括内部的错误检查能力是可取的。事实上,它实现的同时双向沟通(上行和下行),发送下行指令解码快速是可取的,通过上面的证实,执行快速连续,例如,当一个下行指令正在执行另一个下行信号可以发送 - 以相同的工具,或以不同的工具。在定向钻井应用中,一个快速的双向遥测率的好处是非常准确的,无论何时位于井下凿洞因为钻头角度和工具的前刃面可以迅速得到纠正,它能以最小阻力优化钻井。本发明的下行遥测系统克服了前面工艺的缺陷。本发明的概要下行遥测系统提供完善的设备和方法通过压力脉冲通信指令从地球地面上的控制设备到井下装备。该仪器包括地面产生压力脉冲发射机,操作发射机控制系统,为井下接收机接收和解码下行信号到井下工具提供指示。地面发射器包括一个限流装置,通过旁路,流量分流,流量控制设备控制流体的流量,比如气动操作阀,打开和关闭产生的压力脉冲,和背压设备为阀门提供反压力。通过改变限流器旁路的流量是现场可调的,而不是通过流量控制设备限制流量的。限流器最好是在上游孔口,提供了一个反映关闭阀门时产生的地面正脉冲。这个反射面防止正脉冲干扰与传递等,同时,双向通信可以实现上行脉冲的。在另一种方面,地面发射可能包括双搭桥线。操作发射机组件的控制系统包括一台电脑,下行控制器和电磁控制空气阀流量控制装置的气动执行机构提供空气。井下接收由流量计,压力传感器,微处理器,遥测计划收到井下的压力脉冲的过滤和解码算法和编程。在操作中,用户输入一个指令到地面计算机,发送命令到下行控制器。下行控制器发出信号到电磁驱动空气阀,以送风到一个“开放”室或“关闭”室在气动执行器的流量控制设备室,或节流空气阀。节流阀的开启和关闭产生一系列负压脉冲传送到井下钻具接收机接收和解码。遥测计划和目前的下行系统的算法允许同时进行,双向沟通的上行和下行信号在不同频段发送。原始信号由井下接收机接收的下行信号,上行信号,稳态的压力,抽水和钻孔的噪音组成。原始信号通过第一个过滤器,最好是中位数的过滤器,以消除上行信号。这个中位数滤波后的信号通过带通滤波器,最好是一个空气滤波器,来消除噪声和稳定状态的压力。 空气滤波信号是跨与模板波,最好的是方波,以确定每个负压脉冲的时间位置。然后确定该算法指令的交叉相关峰值和解码间隔之间的时间间隔,它有一个指令组件和数据组件。与命令组件有关的正是哪个指示工具和指示该工具正在做什么。数据组件提供与命令相关的变化。该算法还包括错误检查验证之前执行它的指令的功能。如果井下接收器判定下行信号接收不当,上行信号将被发送指示错误,下行信号会被重传。下行遥测系统的应用范围广泛,如指示任何工具,在井下装备包括井下接收机本身。这样的指示可用于井下接收重新编程或改变其操作模式,从而从根本上改变了整个井下组装的方式响应一个给定的指令集,。下行遥测系统具有显著降低下行通信不中断钻井和不中断上行通信需要的时间优势等,同时,双向通信是可以实现的。此外,该算法包括错误检查功能,确保在下行沟通的准确性。因此,本发明包括的特点和优势结合,使它能够克服以前技术下行遥测系统中的各种问题。以上所述的各种特性,以及其他功能,在阅读以下发明的首选实施例的详细描述的那些技能在技术上将显而易见,并参照附图。图纸简介本发明的具体化体现了更详细的说明,现在可以将参考所附的图纸,其中:图1是一个典型的钻井作业,可以采用本发明的下行遥测系统的原理图显示的那样;图2A是一个原理,描绘另一种采用双行旁路系统的发射器装置;图2B包括上图和较低的图形,每个图形描绘了一个慢 - 快 - 慢脉冲信号图2A旁路系统的第二行不使用时,当它被用来分别;图3是一个控制系统为操作发射机装备的详细原理图4是一个经营的节流阀气动执行机构的气动控制系统的详细原理;图5是一个描绘电气代码区和下行遥测系统组件,这些区域内的位置示意图;图6A和6B提供图表电源提供打开和关闭电磁阀,分别为时间的函数,;图6C及6D提供根据时间函数开放和关闭电磁阀的位置图,图6E提供节流阀位置作为时间的函数图;图6F提供了一个井下压力管道作为时间的函数图;图7描述了井下过滤和算法方案的流程图,图7-7D显示图形的输入和输出信号,每个流程图的步骤;图8描述了确定处理的信号脉冲峰值的时间位置的算法流程图。详细描述首选的体现钻井的目的,是为了从地球上提取碳氢化合物,需要井下钻具组合,例如,这可能包括定向钻井和地层评价的工具。操作这些钻井工具,通信链路之间需要在地表上的控制和数据采集设备和井下组装,它钻远低于地球地表。一个共同的方式来实现通信链路的这一目标是通过泥浆脉冲遥测方法。泥浆脉冲遥测用于从地表到井下工具(下行)发送信号,或从井下组装的地面(上行)发送信号。一般下行通信指示,以命令的形式发送到井下工具,上行沟通确认井下组装所收到的指示和地表提供的数据。首先谈到图1,描绘了一个典型的可用于泥浆脉冲遥测的钻井作业。配置到井钻孔20,这可能是开放式或关闭,配置低于钻机17。一个钻具19钻井装备35连接到谷底,以及在18钻具19以及井20之间形成环状流区。地表上,泥浆泵2从储液1和泵的流体吸引钻井流体进入泵出口37行,沿路径3,4。循环流体流动如箭头所示,通过钻具19进入钻机喉16,并通过环18返回到地表,。到达地面后,循环液通过泵回线22返回到储液1。一般情况下,通过泥浆脉冲遥测产生的上行或下行信号,一系列压力变化称为脉冲,地表上发送设置模式到上行接收机39,或在井下装配35下行接收器21。压力变化的幅度和频率被接收器39分析,正在发送的信息或命令用21进行解码。为了说明这一点,一个上行信号可以通过暂时限制流体井下发送,例如41阀,流体被泵入钻具19。当流体的影响限制点瞬间的限制导致压力增加或一个正脉冲。正脉冲在钻具19反馈到流体,和在地表的一个上行接收机39,通常是一个压力传感器读取压力的增加。也可以发送一个上行信号作为一个负脉冲,通过钻具19和环18之间打开一个阀门43,使流体流出,从而创造出负压波传播到地面接收器39。使用这种方法,在井下装配35通信与地表接收机39使用一个正脉冲41或负脉冲43,创造了一系列的压力脉冲,旅行到地面接收器39。下行通讯的传统方法需要操作中断钻探和钻井泵2周期开启和关闭造成压力脉冲通过钻具19到井下接收器21。本发明包括下行不中断钻井仪器和方法。操作理论是建立下行通信的压力脉冲暂时绕过的总流量的一小部分,而不是所有井下抽水,。对于短时旁路期间,压力和体积流量减少井下流程,创建一个负脉冲传输下钻具19。这个负脉冲通过井下接收器21检测井下流体压力变化或流体的速度瞬间变化。 该仪器包括地表发射器装配6,地表发射控制系统90,和井下接收器21。控制系统90包括一台电脑26,下行控制器屏障24确保一定的控制设备连接上气动系统59。本发明的另一个特点是遥测计划和检测算法,并纳入井下接收器21和图7和图8的更详细的描述方面。 地表发射装备 仍然指图1,如虚线框所示,地表发射器装配6可设计成在任何压力范围取决于应用,例如,比如说约10,000 psi的工作压力与最大15,000 psi的压力等级。发射器装配6可以将位于泵2附近的旁路线连接到流回报22行图1所示,或者它可以位于相邻的钻机立管16和旁路7号线连接到环18。表面发射器装配6由一个流量的节流器8流量,一个分流器9,流量控制设备,如一个瓶颈阀门10与执行机构13,下游口11组成。执行机构13可能是任何类型,如气动,液压或电动。发出一个信号或井下压力脉冲,总流量3的一部分是通过旁路7号线改行退出泵2,从而降低流体去井下的压力和流体4,以创建一个负脉冲。操作执行器13创建一个负脉冲打开节流阀10,打开旁路7号线转移,通过变送器装配6流体从总流量3退出泵2。通过旁路7号线转移的液体流量是通过节流阀10的流量限制或全面开放节流阀10和9限制流量以另一种方式通过旁路7号线控制。最好用上游口8作为限流器控制旁路通过7号线流体的流量,从而使节流阀10,保持完全开放。由操作节流阀腰部的全开位置,节流阀10内部的侵蚀最小,成本相对较低的上游口8成为牺牲的磨损组件。 在首选的体现,上游口8是射流限定器。规范喷射限8的大小,地表发射器6导致现场并联系标称尺寸旁路节流器8。然后打开节流阀10和读取压力在喉16以确定多少流体绕过。要改变旁路流量,安装一个较小或较大的喷射计8。位于管路27位的喷射计8,可以迅速改变通过进入插头5。喷射计8最好是碳化钨喷嘴,通过中间的孔,它最好位于上游侧节流阀10。由位于射流计8上游的节流阀10,射流计8瞬时正脉冲提供了反射地表,或在压力增大,通过迅速关闭节流阀10创建的。这些正脉冲会干扰上行脉冲,如果射流计8不位于上游节流阀10。分流器9,这是下游的射流计8,最好是子弹形,或其他形状来精简流程,因为它经过分流器9发生移动。流量分流器9最好包括抗磨损涂层,如钨硬质合金,陶瓷,金刚石组成的复合材料。流量转向器9也可以选择加入一些耐磨损材料,如固体碳化钨,陶瓷固体或固体的钨铬钴合金,。流转向器9强制湍流,高流速,在进入节流阀10前成为普通流体状态退出射流计8。没有分流9钻井液会削弱内部节流阀10,由高的速度退出射流计8。节流阀10下游是一个更大的和固定的孔板11,最好另一位喷气机,大小与节流阀10的控制因素相匹配,以便提供足够的反馈压,以防止在钻井液流穿过节流阀10产生气蚀现象。图1图2A图2B(SLOW慢;FAST快)图3图4(PRESS按压;EXHAUST排气;OPEN开;CLOSE关)图5图6(SOLENOID螺线管;LAG滞后;SINGLE PULSE SHOWN显示单脉冲)图7图8指导教师意见:指导教师签字:年 月 日系(教研室)意见:主任签字:年 月 日注:此表单独作为一页。ABSTRACT :A downlink telemetry system providing improved apparatus and methods for communicating instructions via pressure pulses from surface equipment to a downhole assembly. The apparatus comprises a surface transmitter for generating pressure pulses, a control system, and a downhole receiver for receiving and decoding pulses. In operation, a bypass valve is opened and closed to create a series of pressure pulses received and decoded by a downhole receiver. The method significantly reduces the time required for downlink communication without interrupting drilling and without interrupting uplink communications such that simultaneous, bi -directional communication is achievable if the uplink and downlink signals are sent at different frequencies. The telemetry scheme and algorithm provide an inventive method for filtering and decoding the downlink signals. The algorithm determines the time intervals between pulse peaks and decodes the intervals into an instruction. The algorithm also includes error checking for verifying that the instruction was properly received downhole. DOWNLINK TELEMETRY SYSTEMCROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional of Canadian Application Serial No. 2,438,139, filed 13 February, 2002, which claims priority from U.S. Application Serial No. 09/783,158, filed February 14,2001. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not Applicable. FIELD OF THE INVENTION The present invention relates generally to communicating between control equipment on the earths surface and a subsurface drilling assembly to command downhole instrumentation functions. In particular, the present invention relates to apparatus and methods for communicating instructions to the drilling assembly via pressure pulse signals sent from a surface transmitter without interrupting drilling, and more particularly to apparatus and methods for detecting pressure pulses at a downhole receiver and using an algorithm to decode the pressure pulses into instructions for the downhole assembly, and still more particularly to apparatus and methods for achieving bi-directional communication between the surface equipment and the downhole assembly at a relatively rapid communication rate. BACKGROUND OF THE INVENTIONA hydrocarbon drilling operation utilizes control and data collection equipment on the earths surface and subsurface equipment such as a drilling assembly having drilling apparatus and formation evaluation tools that measure properties of the well being drilled. It has long been recognized in the oil and gas industry that communicating between the surface equipment and the subsurface drilling assembly is both desirable and necessary. Downlink signaling, or communicating from the surface equipment to the drilling assembly, is typically performed to provide instructions in the form of commands to the drilling assembly. For example, in a directional drilling operation, downlink signals may instruct the drilling apparatus to alter the direction of the drill bit by a particular angle or to change the direction of the tool face. Uplink signaling, or communicating between the drilling assembly and the surface equipment, is typically performed to verify the downlink instructions and to communicate data measured downhole during drilling to provide valuable information to the drilling operator. A common method of downlink signaling is through mud pulse telemetry. When drilling a well, fluid is pumped downhole such that a downhole receiver within the drilling assembly can meter the pressure and/or flowrate of that fluid. Mud pulse telemetry is a method of sending signals by creating a series of momentary pressure changes, or pulses, in the drilling fluid, which can be detected by a receiver. For downlink signaling, the pattern of pressure pulses, including the pulse duration, amplitude, and time between pulses, is detected by the downhole receiver and then interpreted as a particular instruction to the downhole assembly. The concept of transmitting signals from the surface of the earth to subsurface equipment through mud pulse telemetry is known and has been practiced in the past. The most common method for creating pressure pulses is by interrupting drilling and cycling the drilling pump on and off at a certain frequency to create pressure pulses that travel downhole through the drill string to instruct the downhole assembly. Another method combines pump cycling with rotation of the drill string. Drilling is interrupted, the drilling tool is lifted off bottom, and the pumps are cycled on and off to inform the downhole assembly that an instruction will be sent from the surface. Then the drill string is rotated at a given speed over a certain duration, and the downhole assembly includes a RPM sensor to measure the rotations. In this manner, instructions are communicated to the downhole assembly. These transmission methods have several disadvantages. The most significant disadvantage is that drilling must be temporarily interrupted every time a signal is sent downhole. Thus, signals are sent downhole only periodically rather than continuously so that forward progress can be made in the drilling operation. During directional drilling, this can be particularly undesirable because the drilling tool can only be adjusted periodically resulting in an unwanted snake-like or tortuous borehole being drilled. Further, these methods are inherently slow because it takes time to start and stop the drilling operation, and although the goal is to instruct the downhole assembly by sending one set of signals, often the signals must be repeated since the downhole receiver does not always properly receive the instruction the first time. Finally, this method also causes unnecessary wear and tear to the pump and associated equipment. Improved apparatus have been developed for transmitting command signals from the earths surface to equipment downhole without starting and stopping the drilling system pumps. For example, U.S. Patent 5,113,379 (the 379 Patent) to Scherbatskoy, hereby incorporated herein by reference for all purposes, describes creating negative pressure pulses by the sequential operation of a valve to bypass a quantity of the drilling fluid from the fluid being pumped downhole. The bypassed fluid is returned to the mud pit, and a surge absorber is employed to prevent backpressure in the mud return line from limiting the flow of fluid through the valve. This system has the disadvantage of not providing a means for adjusting the flowrate through the bypass line. Such flowrate adjustment is desirable for producing pulses of a particular amplitude and for ensuring that the bypass flowrate does not detract from the drilling fluid flowrate in such a way that the drilling operation is stalled. The 379 Patent describes another method for creating pressure pulses by opening and closing a valve in communication with a reservoir having a different fluid pressure than the drilling system pump pressure. Again, this pulsing system provides no apparatus for controlling the flowrate through the pulsing system, and it has more complicated equipment requirements. Still another method described in the 379 Patent requires a motor driven pump to be connected to the drilling system to introduce positive pressure pulses into the fluid column. Although this pulsing system allows for changes in flow rate based on the motor speed, the equipment requirements are more complicated, more expensive, and require more maintenance. Thus, it is desirable to provide a transmitter system for pulsing signals downhole that has simple, inexpensive, and easily maintainable equipment and that provides a way to adjust the flowrate of the bypass fluid. European Patent Application EP 0 744 527 Al (the 527 Application) filed by Baker?Hughes Incorporated, the contents of which are hereby incorporated herein for all purposes, discloses a simple bypass system for producing negative pressure pulses comprising a pneumatically actuated valve and an orifice. The orifice limits the flowrate through the bypass line, and the flowrate can further be adjusted by restricting flow through the valve itself. Further, the speed of the valve actuation is controllable for altering the frequency of the pulse signal. Although the bypass system disclosed in the 527 Application provides an orifice for controlling the bypass flowrate, the orifice is not changeable to adjust the flow restriction as necessary. Namely, as a well is drilled deeper, a higher drilling flowrate is required to prevent the drilling tool from stalling. A change in flow resistance through the drill string may also be caused by, for example, bit jet changes, increased drill string length, and changes in the bottom hole assembly. Such flow resistance changes through the drill string require a change in the bypass flow resistance to maintain the desired bypass flowrate. Therefore, it is desirable to provide apparatus to adjust the bypass flowrate in the field. Restricting flow through the valve to adjust the bypass flowrate is not preferable because the valve internals will be eroded, and valves are costly to replace. Thus, it is desirable to include a low cost, sacrificial bypass flow restrictor that is easily changeable in the field to adjust the bypass flowrate. Further, the invention disclosed in the 527 Application provides no component upstream of the bypass valve to reflect the positive pulses created each time the valve closes. This arrangement would pose problems if simultaneous, bi-directional communication (downlink and uplink) is desired because the positive pulses at the valve will travel upstream into the main piping and could interfere with or cancel out uplink pulses. Thus, it is desirable to provide pulse transmitter equipment arranged in such a way that simultaneous, bi-directional communication is achievable. Once the pressure pulses representing a certain instruction are generated on the surface and transmitted downhole, a receiver disposed in the downhole assembly must decode those signals to distribute the instruction to the proper downhole tool. The receiver will detect noise associated with the pump and drilling operations in addition to the downlink signa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论