




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
应用时间序列分析-现代时间序列分析的最新方法王雪标东北财经大学 数学与数量经济学院第一章 差分方程 统计程序主要是用来处理从独立试验或调查而得到的数据:。与顺序无关。一个时间序列是按照时间参数而排列的数值序列。如,每月失业人数,每年GDP,等等。 对一些序列来说,在每时刻都可做观测,并得到一列数据。这时称为连续时间序列,记。然而,在经济学中,大多数数据都是经过等时间长度做观测而得到的。如,每小时,每天,每周,每月,每季度,每年。这样形成离散时间序列,记。一个观测到的序列可看作是一个随机过程的实现。在统计学中我们主要分析来自总体的样本,而在时间序列分析中我们主要分析来自随机过程的观测序列(实现)。时间序列分析的基本目的是对随机过程的基本特征、性质做推断。因而,时间序列经济学家的主要任务是利用经济数据,建立相对简单的模型,对经济现象进行解释、假设检验和预测。在分析中的第一步通常是形成一个统计量。最终目的是利用数据构造模型,这个模型与随机过程的生成机制有类似的性质。因此他们建立了一系列分析方法,将序列分解为趋势性部分、季节性部分、周期性部分和不规则性部分。 趋势性方程: 季节性方程: 无规则性方程:为期随机扰动项。这三个方程是典型的差分方程。一般来说,差分方程是指一个变量的值表示成这个变量滞后值、时间和其它变量的函数。趋势和季节项是时间的函数,不规则项是它本身滞后项和随机变量的函数。时间序列分析主要处理、估计含有随机元素的差分方程。估计单个序列或向量(包含许多相关的序列)的一些性质。含有随机元素的差分方程通常假设有下面形式:处值=处值的期望+误差项误差项通常取为白噪声序列。如果将处值的期望取为期值的固定比例,这时就是一阶自回归。如果将处值的期望取为过去值的加权平均,这时就是高阶自回归。 线性差分方程(p阶)这个差分方程的一般解是 这里是齐次方程的解,是特解。这里的滞后算子表示为:,对于一阶齐次方程则,解为, 是依赖于初值的常量。 对于二阶齐次方程则,可能的解的形式为 代回方程得 ,如果是方程的根,则确实是方程的解。可利用初值的条件,确定。 对于一般的p阶方程有解 这里是方程的根(假设没有重根)。如果是复根,则有共轭对应,形为,对于充分大的,解的形式将由所控制,。 如果,解是平稳的。如果,解是爆炸性的。 解是平稳的充分必要条件是:的根在单位园之外,把它称为平稳性条件。本课程将介绍一维和多维时间序列的预测方法;介绍如何估计时间序列的不规则部分;当数据显示波动和相对平滑时,方差如何估计;趋势的估计(趋势是确定性的还是随机性的);随机向量差分方程的特征性质;多维模型中趋势的估计。 虽然时间序列分析的主要内容是预测,经济学的动态变化使时间序列分析又有新的应用。许多经济理论有随机差分方程表示。而且,许多重要经济变量的时间路径都具有可检验性。 看下面三个例子:1 随机游动假说:随机游动模型解释了股票每天价格的变化应该有零均值。如果已知在t天买一份股票,在下一天卖掉可以得到预期的利润的话,那么大量投机就会驱使现价上涨。同样,如果一份股票预期要贬值,没人会想持有这个股票。这个模型认为:股票价格应当满足随机差分方程 或 这里 在t天一份股票的价格 有零均值的随机扰动项。 现在考虑更一般的随机差分方程 检验随机游动假设就是检验限制条件,拒绝这个限制等价于拒绝随机游动假说。2 导出(reduced)型方程和结构方程:将一个差分方程组分解成几个单方程模型是有用的。为了说明这个重要问题,考虑Samuelson (1939)的经典模型: (1.1) (1.2) (1.3)这里和表示在t期实际GDP、消费和投资。在这个Keynesian模型中,和是内生变量。前一期GDP 和前一期消费被称为前定的或滞后的内生变量。称为消费和投资的零均值扰动项,是要估计的参数。第一个方程说明:总产出(GDP)等于消费与投资之和。第二个方程说明:消费等于前一期的GDP的比例加上随机扰动项。第三个方程是加速原理:投资和消费变化成比例,消费的增长促使了新的投资。误差项代表了这个方程不能解释的消费和投资部分。方程(1.1)是结构方程(内生变量与其它内生变量当期之间的关系),内生变量依赖于其它内生变量、的现期实现。导出型方程是将一个内生变量表示成它的滞后值、其它内生变量的滞后值、外生变量的现值和滞后值及扰动项的方程。按此说法,消费函数(1.2)是导出型:现期消费只依赖于滞后收入和随机扰动项的现期值。投资方程(1.3)不是导出型,因为它依赖于现期消费。 为了得到投资的导出型方程,将(1.2)代人投资方程中,得 注意,上方投资的导出型方程不是唯一的。可以将(1.2)滞后一期获得,利用这个表达式,导出型投资方程可写成 (1.4)同样,对于GDP的导出型方程可通过将(1.2),(1.4)代人(1.1)中,得 (1.5)方程(1.5)是一维导出型方程;可表示成本身的滞后项和扰动项的函数。一维模型对于预测是非常有用的,因为,你可以用现值和过去值进行预测。利用一维时间序列的技术可以估计(1.5)。一旦你获得了和的估计,利用到的观测值,可以预测序列的所有将来值(第5章考虑多维模型(所有变量被认为是联合内生的),也讨论由导出模型推出结构型模型的限制条件。3、误差修正:远期和现金交易价格某种商品和金融工具在现期市场中或将来的某一时刻能被买和卖,例如,假设在现期市场某种外汇的价格是美元,远期价格是美元。到t+1期,投机者得到外汇,并付美元。因为现期汇率可以的价格卖,投机者能挣的利润是 无偏的远期利率(UFR)假设认为这种投机行为的预期利润为零。远期、现期汇率有下面关系: (1.6)这里有零均值。在(1.6)中,t期的远期汇率是t+1期现期汇率的无偏估计。因此,假如你收集到了这两种数据,并估计了回归方程 如果你能断定,回归残差有零均值,则UFR假设成立。 当=0时,远期和现期市场被说成是长期均衡。只要偏离时,在下一期将会有一些必要的调整,以恢复均衡。考虑调整过程: (1.7) (1.8)这里,均值都为零。 方程(1.7),(1.8)说明了联立调整机制,这个动态模型被称为误差修正模型。因为,变量与前一期偏离长期均衡的偏差有关。如果现期汇率等于远期汇率,(1.7),(1.8)说明:现期汇率与远期汇率预期不变。如果现期汇率与远期汇率之间有正偏差,则(1.7),(1.8)说明:现期汇率将下降,远期汇率将上升。4 蛛网模型 为了说明差分方程,我们举一个传统的蛛网模型的一种随机形式来说明农产品价格的波动性。如小麦价格由下面供需决定:这里t期小麦的需求t期小麦的供给t期小麦的市场价格农民对t期小麦的预期价格零均值的随机供给冲击。参数保证均衡价格为正)假设消费者可按市场价任意购买小麦。在种植期,农民不知道小麦在收割时的价格,他们的供给依赖于预期价格,与实际小麦市场不同,这里不允许有囤积。蛛网模型的关键是农民使用上期价格作为市场价格的预期 点E代表长期均衡价格和消费量。在这个随机模型中的均衡概念不同于传统的蛛网模型。如果这个系统是稳定的,价格会趋于E点。但随机均衡是指供给冲击使系统偏离E点。但解出长期均衡价格是有用的。如果令都为0,供给=需求,长期均衡价格为 同样,均衡量(供给,需求)为 为了分析这个系统的动态,我们假设农民在t期生产均衡数量s。但是,有一个负的供给冲击,使实际生产量为,点1,为了简单,假设这供给冲击的后续值都为零。(。在t+1期时,。他们生产,点2。但,当价格降到时,消费者愿意买,点3。重复这个过程,直到达点E。 价格数量sd 但这个均衡不一定对所有供给、需求曲线都能达到。为了求出稳定条件,我们有 或 这是一阶线性差分方程。为了得到一般解:1、 解齐次方程 A是任意常数。2、 如果,则由迭代,有 如果,上式不收敛。3、 一般解为: 4、 如果我们知道在某个初始期的价格,则我们可确定A。因为一般解对每期都成立,所以 因而可求出A,可得 (1.4.1)我们可用图形解释上式。为了考虑系统的稳定性,可以暂时假设都为零,然后再考虑供给冲击的效应。如果系统从长期均衡开始,初始条件是,则考察上式,有。因此,过程从E点开始,则保持在均衡点。如果过程从低于长期均衡价格开始,则(1.4.1)说明 在第2期 因此,。类似地,将振荡在长期均衡价格上下。如果收敛到零。如果将发散。这个稳定条件的经济解释是:供给曲线的斜率(,需求曲线斜率的绝对值。如果供给曲线比需求曲线更陡峭,即时, 系统是稳定的。现在考虑供给冲击效应。供给冲击对小麦价格的当期影响效应是的偏导数: (1.4.2)这个方程被称为影响乘数,它反映了在t期的变化对的影响。的负值意味着价格高于均衡价格,供给每下降一个单位,价格上升1/单位。供给冲击效应可持续到将来。由(1.4.1)可知 类似地,这些乘数的时间路径被称为脉冲反应函数,脉冲反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年住院医师规培-青海-青海住院医师规培(耳鼻咽喉科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-辽宁-辽宁住院医师规培(神经外科)历年参考题库典型考点含答案解析
- 气象应急知识培训课件
- 2025年住院医师规培-甘肃-甘肃住院医师规培(麻醉科)历年参考题库含答案解析
- 2025年住院医师规培-河南-河南住院医师规培(胸心外科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-河南-河南住院医师规培(口腔内科)历年参考题库典型考点含答案解析
- 康复治疗师面试实战经验分享:常见面试问题及答案
- 2025年住院医师规培-河北-河北住院医师规培(外科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-江西-江西住院医师规培(口腔科)历年参考题库典型考点含答案解析
- 2025年住院医师规培-江苏-江苏住院医师规培(肾脏内科)历年参考题库典型考点含答案解析
- 2025年秋季新学期全体中层干部会议校长讲话:在挑战中谋突破于坚实处启新篇
- 2025年幼儿园保育员考试试题(附答案)
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- GB/T 4745-2012纺织品防水性能的检测和评价沾水法
- 北京理工大学应用光学课件(大全)李林
- 失智老年人走失风险评估表、“十人四追”法
- 全员安全生产责任制度
- 工作桌面pad相关gec3000通讯协议v2
- 正压式呼吸器使用与管理规范
- GB∕T 37004-2018 国家物品编码通用导则
评论
0/150
提交评论