2008年4月线代数(经管类)试题答案.doc_第1页
2008年4月线代数(经管类)试题答案.doc_第2页
2008年4月线代数(经管类)试题答案.doc_第3页
2008年4月线代数(经管类)试题答案.doc_第4页
2008年4月线代数(经管类)试题答案.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全国2008年4月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1设行列式D=3,D1=,则D1的值为( )A-15B-6C6D152设矩阵=,则()ABCD3设3阶方阵A的秩为2,则与A等价的矩阵为()ABCD4设A为n阶方阵,则()ABCD5设A=,则()A-4B-2C2D46向量组()线性无关的充分必要条件是()A均不为零向量B中任意两个向量不成比例C中任意个向量线性无关D中任意一个向量均不能由其余个向量线性表示7设3元线性方程组,A的秩为2,,为方程组的解,则对任意常数k,方程组的通解为()ABCD8设3阶方阵A的特征值为,则下列矩阵中为可逆矩阵的是()ABCD9设=2是可逆矩阵A的一个特征值,则矩阵必有一个特征值等于()ABC2D410二次型的秩为()A1B2C3D4二、填空题(本大题共10小题,每小题2分,共20分)11行列式=_ _12设矩阵A=,P=,则 13设矩阵A=,则 14设矩阵A=,若齐次线性方程组Ax=0有非零解,则数t=_ _15已知向量组,的秩为2,则数t=_ _16已知向量,与的内积为2,则数k= 17设向量为单位向量,则数b=_18已知=0为矩阵A=的2重特征值,则A的另一特征值为_19二次型的矩阵为 20已知二次型正定,则数k的取值范围为 三、计算题(本大题共6小题,每小题9分,共54分)21计算行列式D=的值22已知矩阵A=,B=,(1)求A的逆矩阵;(2)解矩阵方程23设向量,求(1)矩阵;(2)24设向量组,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示25已知线性方程组,(1)求当为何值时,方程组无解、有解;(2)当方程组有解时,求出其全部解(要求用其一个特解和导出组的基础解系表示)26设矩阵A=,(1)求矩阵A的特征值与对应的全部特征向量;(2)判定A是否可以与对角阵相似,若可以,求可逆阵P和对角阵,使得四、证明题(本题6分)27设n阶矩阵A满足,证明可逆,且全国2008年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1设行列式D=3,D1=,则D1的值为(C)A-15B-6C6D15D1=2设矩阵=,则(C)ABCD3设3阶方阵A的秩为2,则与A等价的矩阵为(B)ABCD4设A为n阶方阵,则(A)ABCD5设A=,则(B)A-4B-2C2D46向量组()线性无关的充分必要条件是(D)A均不为零向量B中任意两个向量不成比例C中任意个向量线性无关D中任意一个向量均不能由其余个向量线性表示7设3元线性方程组,A的秩为2,,为方程组的解,则对任意常数k,方程组的通解为(D)ABCD取的特解:;的基础解系含一个解向量:8设3阶方阵A的特征值为,则下列矩阵中为可逆矩阵的是(D)ABCD不是A的特征值,所以,可逆9设=2是可逆矩阵A的一个特征值,则矩阵必有一个特征值等于(A)ABC2D4是A的特征值,则是的特征值10二次型的秩为(C)A1B2C3D4,秩为3二、填空题(本大题共10小题,每小题2分,共20分)11行列式=_0_行成比例值为零12设矩阵A=,P=,则=13设矩阵A=,则14设矩阵A=,若齐次线性方程组Ax=0有非零解,则数t=_2_,15已知向量组,的秩为2,则数t=_-2_,秩为2,则16已知向量,与的内积为2,则数k=,即,17设向量为单位向量,则数b=_0_,18已知=0为矩阵A=的2重特征值,则A的另一特征值为_4_,所以19二次型的矩阵为20已知二次型正定,则数k的取值范围为,三、计算题(本大题共6小题,每小题9分,共54分)21计算行列式D=的值解:22已知矩阵A=,B=,(1)求A的逆矩阵;(2)解矩阵方程解:(1),=;(2)=23设向量,求(1)矩阵;(2)解:(1)=;(2)=24设向量组,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示解:,向量组的秩为3,是一个极大线性无关组,25已知线性方程组,(1)求当为何值时,方程组无解、有解;(2)当方程组有解时,求出其全部解(要求用其一个特解和导出组的基础解系表示)解:(1)时,方程组无解,时,方程组有解;(2)时,全部解为26设矩阵A=,(1)求矩阵A的特征值与对应的全部特征向量;(2)判定A是否可以与对角阵相似,若可以,求可逆阵P和对角阵,使得解:,特征值,对于,解齐次线性方程组:,基础解系为 ,对应的全部特征向量为(是任

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论