




已阅读5页,还剩68页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
水质工程学课程设计西安市某污水处理厂设计内容摘要 本设计为西安市某污水处理厂工程工艺设计,污水处理厂规模为81040m3/d,污水主要来源为生活污水和工业废水,主要污染物质是BOD、COD 、SS 、TN、NH3-N、TP,适宜采用生化处理方法。结合污水来源的水质特征,确定采用倒置A2/O为主体反应池的污水处理工艺流程和以重力浓缩池为主体的污泥处理工艺流程。本工艺具有良好的去除BOD、COD及脱氮除磷的功能,对BOD、COD、SS、TN、NH3-N、TP的去除率分别能达到96.23%、89.51%、96.68%、68.72%、83.33%、86.23%,污水处理厂处理后的出水达到城镇污水处理厂污染物排放标准(GB18918-2008)中的一级A标准,其出水就近排入水体。关键词 倒置A2/O工艺;脱氮除磷;曝气沉砂池;辐流式沉淀池;浓缩池目录西安市某污水处理厂设计11 设计任务书41.1设计任务与内容41.2设计依据及原始资料42 设计说明书62.1设计水量计算62.2设计水质82.3计算当量人口数N113 确定工艺流程123.1工艺流程选择的原则123.2工艺流程的确定134 水处理各构筑物的选择及设计计算214.1进水闸井的设计214.2格栅234.3沉砂池304.4倒置A2/O反应池364.5二沉池464.6接触消毒池524.7 污泥浓缩池544.8 浓缩污泥贮池574.9浓缩污泥提升泵房584.10 污泥脱水585构(建)筑物和设备一览表606污水处理厂概算及处理成本626.1 计算原则626.2 污水厂建设直接费626.3 污水处理成本691 设计任务书1.1设计任务与内容1.1.1设计简介本设计为环境工程专业水质工程学课程设计,本设计题目为:西安市某污水处理厂设计。设计任务是在指导教师的指导下,在规定的时间内进行城市污水处理厂的设计。1.1.2设计任务与内容(1)污水处理程度计算根据水体要求的处理水质以及当地的具体条件、气候与地形条件等来计算污水处理程度。(2)污水处理构筑物计算确定污水处理工艺流程后选择适宜的各处理单体构筑物的类型。对所有单体处理构筑物进行设计计算,包括确定各有关设计参数、负荷、尺寸等。(3)污泥处理构筑物计算根据原始资料、当地具体情况以及污水性质与成分,选择合适的污泥处理工艺流程,进行各单体处理构筑物的设计计算。(4)平面布置及高程计算对污水、污泥及中水处理流程要作出较准确的平面布置,进行水力计算与高程计算。(5)污水泵站工艺计算对污水处理工程的污水泵站进行工艺设计,确定水泵的类型扬程和流量,计算水泵管道系统和集水井容积,进行泵站的平面尺寸计算和附属构筑物计算。1.2设计依据及原始资料1.2.1设计依据本设计依据环境工程专业毕业设计任务书,给水排水工程快速设计手册(2排水工程)、排水工程(第四版)下册、水污染控制工程(第三版)下册、给水排水设计手册(第四版)、城镇污水处理厂污染物排放标准(GB18918-2008)等进行设计。1.2.2设计原始资料(1)排水体制排水体制采用完全分流制(2)污水量 城市设计人口 34万 人,居住建筑内设有室内给排水卫生设备和淋浴设备。 城市公共建筑污水量按城市生活污水量的30计。 工业污水量为 28000 米3平均日,其中包括工业企业内部生活淋浴污水。 城市混合污水变化系数:日变化系数K日 1.1 ,总变化系数Kz 1.3 。(3)水质: 当地环保局监测工业废水的水质为: BOD5 295 mg/L COD 584 mg/L SS 240 mg/L TN 46 mg/L NH3-N= 30 mg/L TP 3.7 mg/L PH78 城市生活污水水质: COD 420 mg/L NH3-N= 30 mg/L TN 49 mg/L TP 3.6 mg/L 混合污水: 重金属及有毒物质:微量,对生化处理无不良影响;大肠杆菌数:超标;冬季污水平均温度15,夏季污水平均温度25。(4)出水水质污水处理厂出水水质参考城镇污水处理厂污染物排放标准(GB18918-2002)中的一级A标准,并尽量争取提高出水水质,因此确定本污水厂出水水质控制为:CODCr50mg/L SS10mg/L BOD510mg/LTN15 mg/L NH3-N=5(8)mg/L TP0.5mg/L城市污水经处理后,就近排入水体,其出水也可作为杂用回用水。(5)气象资料 气温:年平均13.6,最高45.2,最低20.6 风向风速:常风向为东北与西南风,最大风速25m/s 降水量:年平均降雨量587.63mm,最高年817.8 mm,最低年285.2 mm。 冰冻期36d,土壤冰冻深度最大50cm,一般为10 cm。(6)水体、水文地质资料 水体资料污水厂处理出水排入水体,水体河底标高390.65 m,平均流量1.5 m3s,平均水深2.8 m,底坡8。 区域地下水为潜水,地下水位在5.010.0m,随季节变化。水质对混凝土无侵蚀性。(7)工程地质资料 地基承载力特征值 130 KPa,设计地震烈度7度。 土层构成:由上至下包括黄土状亚粘土、饱和黄土状亚粘土、细粉砂与中粗砂、亚粘土等。(8)污水处理厂地形图,厂区地坪设计标高为398.88 m。(9)污水处理厂进水干管数据管内底标高392.38m,管径 1250 mm 充满度 0.85 2 设计说明书2.1设计水量计算本设计中设计水量的计算包括平均日污水量、最大日污水量、最大时污水量的计算,按照给水排水工程快速设计手册(2排水工程)第7页表2-6公式进行计算。2.1.1平均污水量Qp的计算(1)生活污水量Qp1的计算 式中:每人每日平均污水量定额L/(人d),该市位于陕西,由给水排水工程快速设计手册(2排水工程)第6页表2-4查知,陕西属于第二分区,居住建筑内设有室内给排水卫生设备和淋浴设备,所以为100140 L/(人d),取=120 L/(人d)N设计人口数,34万人=340000 120 L/d=40800m3/d(2)公共建筑污水量Qp2的计算=30% =30%40800 m3/d=12240 m3/d(3)工业污水量的计算 由原始资料可知:=28000 m3/d(4)平均污水量的计算40800+12240+28000=81040 m3/d2.1.2设计最大日污水量的计算 =1.181040 m3/d=89144m3/d2.1.3设计最大时污水量的计算 =1.381040 m3/d=105352m3/d2.1.4设计水量汇总各设计水量汇总入表1中。表1.各设计水量汇总项目水量m3/dm3/hm3/sL/s平均日污水量810403376.670.938937.96最大日污水量891443714.331.0321031.76最大时污水量1053524389.671.2191219.352.2设计水质2.2.1进水的水质计算本设计进水水质计算包括SS、BOD5、COD、TN、NH3-N、TP等的浓度的计算,其计算方法如下:(1)混合污水中SS浓度的计算: 式中: s每人每日排放的污水量,s=120L/(人d) as每人每日排放的SS的量,由给水排水设计手册(第五册)第246页查知,as =35-50g/(人d),取as =40g/(人d)生活污水中SS浓度的计算mg/L=333.33 mg/L工业污水中SS浓度的计算由设计原始资料得知Cs2=240mg/L混合污水中SS浓度计算 =301.08mg/L(2)混合污水中的BOD5浓度的计算 式中: s每人每日排放的污水量,s=120L/(人d) as每人每日排放的BOD5的量,由给水排水设计手册(第五册)第246页查知,as =20-35g/(人d),取as =30g/(人d)生活污水中BOD5浓度的计算=mg/L=250mg/L工业污水中BOD5浓度的计算由设计原始资料得知=295mg/L混合污水中浓度计算 =265.55mg/L(3)混合污水中的COD浓度的计算生活污水中COD浓度 COD=420mg/L工业污水的COD浓度 COD=584mg/L混合污水中COD浓度 COD=mg/L=476.66mg/L(4)混合污水中的TN浓度的计算生活污水中TN浓度 TN=49mg/L工业污水的TN浓度 TN=46mg/L混合污水中TN浓度 TN=mg/L=47.96mg/L(5)混合污水中的NH3-N浓度的计算生活污水中NH3-N浓度 NH3-N=30mg/L工业污水的NH3-N浓度 NH3-N=30mg/L混合污水中NH3-N浓度 NH3-N=mg/L=30mg/L(6)混合污水中的TP浓度的计算生活污水中TP浓度 TP=3.6mg/L工业污水的TP浓度 TP=3.7mg/L混合污水中TP浓度TP=mg/L=3.63mg/L(7)混合污水其它水质指标重金属及有毒物质:微量,对升华处理无不良影响;大肠杆菌数:超标;冬季污水平均温度15,夏季污水平均温度为25。2.2.2出水水质设计(1)污水处理厂出水水质参考城镇污水处理厂污染物排放标准(GB18918-2008)中的一级A标准,并尽量争取提高出水水质,因此确定本污水厂出水水质控制为:CODCr50mg/L SS10mg/L BOD510mg/LTN15 mg/L NH3-N=8mg/L TP0.5mg/L(2)城市污水经处理后,就近排入水体,其出水也可作为杂用回用水。(3)处理厂对污水各项指标的处理程度式中: 进水中某种污染物的平均浓度(mg/L) 出水中该种污染物的平均浓度(mg/L)将各项水质指标带入上式中,计算出对污水的处理程度如下:SS96.68% COD89.51% BOD596.23%TN68.72% NH3-N83.33% TP86.23%2.3计算当量人口数N 式中:城市人口数,34万人;公共建筑用水折算而得的人口数,工业废水折算而得的人口数。2.3.1公共建筑用水折算而得的人口数 2.3.2工业废水折算而得的人口数工业废水按SS、BOD浓度折合为人口数是按照给水排水设计手册(第五册)第246页公式4-1转化进行计算的,折合成人口数的计算公式为: (1)工业废水按SS计算式中: 工业废水中SS的浓度,Css=240mg/L; 工业废水的平均日污水量,Qp2=28000人;as每人每日排放的SS量,由给水排水设计手册(第五册)第246页查知,as =35-50g/(人d),取as =40g/(人d)。 =168000=16.8万人(2)按BOD5计算 式中: 工业废水中BOD5的浓度,CBOD5=295mg/L 工业废水的平均日污水量,Qp2=28000人as每人每日排放的BOD5量,由给水排水设计手册(第五册)第246页查知,as =20-35g/(人d),取as =30g/(人d) =275333人=27.53万人3 确定工艺流程3.1工艺流程选择的原则污水处理的目的主要有两个,其一是保护水资源不受污染,因此处理后出水要达到水质标准;其二是污水回用,处理后出水用于农田灌溉、城市中水和工业生产等,为此处理水要满足相应的用水要求,水处理工程师手册对工艺流程的选择给出了以下的原则和要求,所以污水处理工艺的选择也要按照下面的原则和要求进行。 (1)工艺流程应根据原水性质和用水要求选择,其处理程度和方法应符合现行的国家标准和地方的有关规定,处理后水质应符合有关用水和排放的标准要求;(2)应充分利用当地的地形、地址、水文、气象等自然条件及自然资源;(3)污水处理应充分考虑排放水体的稀释、自净能力,根据污水处理程度来选择流程;(4)流程选择应妥善处理技术先进和合理可行的关系,并考虑远期发展对水质水量的要求,考虑分期建设的可能性;(5)流程组合的原则应当是先易后难,先粗后细,先成本低的方法,后成本高的方法。3.2工艺流程的确定(1)主要处理工艺性能比较:A-O法处理工艺A-O法生物脱氮污水处理工艺,是80年代初开创的工艺流程。其主要特点是将反硝化反应器放置在系统之首,故称为前置反硝化脱氮系统,是目前采用的较广泛的一种脱氮工艺,在反硝化缺氧池中,回流污泥中的反硝化细菌利用原污水中的有机物作为碳源,将回流混合液中的大量硝态氮还原成氮气,而达到脱氮的目的,然后在后续的好氧池中进行生物氧化、有机物氨化、氨氮的硝化等生化反应。A-O工艺的主要特征如下:1、主体污水处理单元由缺氧反应器、好氧反应器两部分组成。缺氧反应器的主要功能是脱氮;好氧反应器的功能是多方面的,去除BOD、硝化反应等。所以,A-O工艺可以同时完成有机物的去除、硝化脱氮等功能,脱氮的前提是NH3-N应完全硝化,好氧池完成这一功能,缺氧池则完成脱氮功能。2、A-O法污水处理工艺中,缺氧、好氧不同的环境条件及不同功能的微生物群的配合协作是其主要特点。在工艺上可以称为最简单的生物脱氮工艺,总的水力停留时间少于其它的同类工艺。3、缺氧、好氧交替运行的条件下,丝状菌不能大量增殖,不会发生污泥膨胀,SVI值一般小于100。运行中A段中只需轻缓搅拌,运行费用低。4、流程简单,构筑物少,只有一个污泥回流和混合液回流系统,节省基建费用。反硝化池不需外加碳源,降低了运行费用。5、A-O工艺的好氧池在缺氧池之后,可以使反硝化残留的有机物得到进一步的去除,提高出水水质。缺氧池在前,污水总的有机物被反硝化菌所利用,可以减轻其后的好氧池的有机负荷,同时缺氧池在运行过程中进行的反硝化反应中产生的碱度可以补偿好氧池中进行硝化反应中对碱度的要求。A-O法的缺点有如下两方面:1、A-O工艺的脱氮效率与硝化液回流率相关,较高的脱氮要求较大的硝化液回流,综合考虑各方面情况,脱氮效率不是太高。2、对于低浓度的城市污水,采用A-O法时,对于污水的脱氮不利,可以采用在初沉池设跨越管线,直接进入二级生物处理设施,使污水保持合适的C/N比,利于氮的硝化。AB法污水处理工艺AB法污水处理工艺是吸附生物降解工艺的简称,是70年代中期开创的,由于它的独特特点,受到污水处理界的青睐,从80年代开始用于实际工程。 AB法污水处理工艺的主要特点是:(1)未设初沉池,由吸附池和中间沉淀池组成的A段为一级 处理系统。B段由曝气池和二沉池组成。A段和B段各自拥有自己的独立的回流系统,这样两段完全分开,有各自独特的生物群体,处理效果稳定。A段的有机负荷高,抗冲击负荷能力强,对PH和有毒物质的影响有较大的缓冲能力,特别适用于浓度高、水质水量变化较大的污水。(2)由于A段的吸附作用,A段出水的BOD大为降低,减轻了B段的污泥负荷,创造了硝化细菌在微生物群体的存活条件,A段对氮的部分去除,使B段的BOD/N有所降低,这样B段具有硝化进程的工艺条件,就很方便地形成A/O活性污泥法脱氮效果。另外,A段的较强吸附能力,也可以对磷有一定的去除。(3)节能。运行费用低,耗电量低,可回收沼气能源。经试验证明,AB法工艺较传统的一段法工艺节省运行费用20%25%.同普通的活性污泥法相比较,AB法不仅抗冲击负荷强、技术先进,除对污水中的有机物去除外,对氮磷也有一定的去除,而且基建投资和系统运行稳定。AB工艺的缺点:(1)AB法活性污泥处理工艺在运行过程中,A段产生大量的污泥,而在污水处理中,最难的就是污泥处理,污泥不能妥善处理,则可能会造成二次污染。(2)AB法活性污泥处理工艺在要求对氮磷进行处理时,A段的出水保证B段的碳源,而在我国的污水中,一般BOD浓度较低, A段出水的BOD/N较低,使脱氮的效果较差。(3)总的来说,采用AB法进行污水处理,除磷效果很难保证,在进水磷酸盐浓度稍高时,处理出水较难达标排放。同时B段的脱氮效果也低于AO处理工艺。AB法工艺在我国的研究和应用大致经历了以下三个阶段:第一阶段:上世纪70年代末至80年代初期,我国许多专家学者对AB工艺的特性、运行机理及处理过程和稳定性等方面,进行了深入全面和系统的研究,对“AB法”工艺在我国的应用和推广起到了积极作用。第二阶段:上世纪70年代末至80年代,我国许多大专院校纷纷开设专题研究课程,尤其是设计研究部门也对AB法处理城市污水、工业废水进行规模化的实验研究,为AB法的工程设计和工程应用取得了大量的数据和实践经验,为其在我国的工程应用起到了十分关键的作用。第三阶段:自上世纪80年代起,国内逐步开始将“AB法”应用到城市污水处理和工业废水处理工程中,已建成相当数量的AB法工艺的城市污水处理厂,成效显著,取得了十分可观的社会效益和环境效益。总体而言,AB法工艺适合于污水浓度高、具有污泥消化等后续处理设施的大中规模的城市污水处理厂,有明显的节能效果。对于有脱氮要求的城市污水处理厂,一般不宜采用。氧化沟处理工艺氧化沟又名氧化渠(Oxidation ditch,简写O.D),因其构筑物呈封闭的沟渠形而得名,是于50年代由荷兰的巴斯维尔所开发的一种污水生物处理技术,属活性污泥法的一种变型。因为污水和活性污泥的混合液在环状的曝气渠道中不断循环流动,在有些资料上也称为“循环曝气池”,“无终端的曝气系统”。氧化沟技术处理城市污水的效果显著,这已由我国和其他国家对这项技术的实际调查、研究和应用结果所证实。将氧化沟工艺用于工业废水的更进一步推动了该工艺的发展。随着氧化沟技术的不断完善和配套设施的进步更新,这项工艺的适用范围愈来愈扩大,由过去日处理量多为3000m3以下到目前日处理量在10万m3以上的普遍应用。与传统活性污泥法曝气池相较,氧化沟具有下列各项特征:(1)在构造方面的特征1)氧化沟一般呈环形沟渠状,平面多为椭圆形或圆形,总厂可达几千米,甚至百米以上。沟深取决于曝气装置,自2m至6m。2)单池的进水装置比较简单,只要伸入一根进水管即可,如双池以上平行工作时,则应设配水井,采用交替工作系统时,配水井内还要设自动控制装置,以变换水流方向。出水一般采用溢流堰式,宜于采用可升降式的,以调节池内水深。采用交替工作系统时,溢流堰应能自动启闭,并与进水装置相呼应以控制沟内水流方向。(2)在水流混合方面的特征在流态上,氧化沟介于完全混合与推流之间。污水在沟内的流速v平均为0.4m/s,氧化沟总长为L,当L为100500m时,污水完成一个循环所需时间约为420min,如水力停留时间定为24h,则在整个停留时间内要作72360次循环。可以认为在氧化沟内混合液的水质是几近一致的,从这个意义来说,氧化沟内的流态是完全混合式的。但是又具有某些推流式的特征,如在曝气装置的下游,溶解氧浓度从高向低变动,甚至可能出现缺氧断。氧化沟的这种独特的水流状态,有利于活性污泥的生物凝聚作用,而且可以将其区分为富氧区、缺氧区,用以进行硝化和反硝化,取得脱氮的效应。(3)在工艺方面的特征1)可考虑不设初沉池,有机性悬浮物在氧化沟内能够达到好氧稳定的程度。2)可考虑不单设二次沉淀池,使氧化沟与二次沉淀池合建,可省去污泥回流装置。3)BOD负荷低,同活性污泥法的延时曝气系统,对此,具有下列各项效益;A.对水温、水质、水量的变动有较强的适应性;B.污泥龄(生物固体平均停留时间),一般可达1530d,为传统活性污泥系统的36倍。可以存活、繁殖世代时间长、增值速度慢的微生物,如硝化菌,在氧化沟内可能产生硝化反应。如运行得当,氧化沟能够具有反硝化脱氮的效应。C.污泥产率低,且多已达到稳定的程度,勿需再进行消化处理。氧化沟在实际运行中的问题:(1)污泥膨胀问题 当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。 (2)泡沫问题 由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。(3)污泥上浮问题 当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。 (4) 流速不均及污泥沉积问题 在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.30.5m/s。氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250300mm,转盘的浸没深度为480 530mm。与氧化沟水深(3.03.6m)相比,转刷只占了水深的1/101/12,转盘也只占了1/61/7,因此造成氧化沟上部流速较大(约为0.81.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。 我国在20世纪80年代末开始在城市污水和工业废水处理中引进了国外氧化沟的先进技术,应用于河北邯郸、广东中山等地的污水处理厂,取得了很好的处理效果。采用的沟型几乎包括了世界上曾流行和现流行的所有氧化沟沟型,如Pasveer沟、一体化氧化沟、导管式氧化沟、Carrousel沟、Orbal沟、交替式氧化沟等。间歇式活性污泥法间歇式活性污泥法通常称为SBR法(Sequencing Batch Reactor),也称序批式活性污泥法。它分为进水、曝气、静沉、排水、闲置等五个阶段。间歇式活性污泥法产生于活性污泥法的开创期,由于其操作烦琐,长期以来不被水处理界所青睐。随着计算机的飞速发展,为重新考虑SBR法创造了条件。常规的SBR法对于污水中的有机物有较好的去除作用,通过最新的研究发现,采用限制曝气(充水阶段不曝气)和半限制曝气(充水的后期进行曝气)的运行方式,可以使SBR工艺具有良好的脱氮除磷的功能。SBR工艺的特点:(1)工艺简单,取消了初沉池和二沉池,不需要设置回流设备,节省了建设费用。(2)趋于理想化的推流过程使生化反应的推力大、效率高。(3)运行方式灵活,不仅可以很容易实现好氧、缺氧与厌氧状态交替的环境条件,而且很容易在好氧条件下增大曝气量、反应时间、污泥龄。脱氮脱磷效果好。对将来城市污水水质的可能变化有很好的适应性。(4)该工艺能够很好地防污泥膨胀,使沉淀速率加大。(5)耐冲击负荷、处理能力强。(6)自动化程度高,保证出水水质。(7)半静止状态沉淀,表面水力和固体负荷低,沉淀效果好。(8)特别适合于小城市污水处理厂的建设。SBR的缺点是:(1)装机功率较高,有些设备价格比较昂贵(如滗水器,包括自控部分等)。(2)整套工艺反应器全部依靠电脑控制,所以对设备、仪表、阀门及自控系统的可靠性要求高。(3)好氧反应和厌氧反应在同一个反应器中进行,必须对供氧和搅拌进行专门考虑。SBR的适用范围: SBR系统进一步拓宽了活性污泥的使用范围。就近期的技术条件,SBR系统更适合以下情况: (1)中小城镇生活污水和厂矿企业工业废水,尤其是间歇排放和流量变化较大的地方。 (2)需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。 (3)水资源紧缺的地方。SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。 (4)用地紧张的地方。 (5)对已建连续流污水处理厂的改造等。 (6)非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。 近期来随着SBR工艺的发展,特别是连续进水、连续出水方案的改进,使SBR工艺以应用于大中心污水处理厂。倒置A2/O法常规除磷脱氮工艺提出一种新的碳源分配方式,缺氧区放在工艺最前端,厌氧区置后,即所谓的倒置A2/O工艺见下图。其特点如下:聚磷菌厌氧释磷后直接进入生化效率较高的好氧环境,其在厌氧条件下形成的吸磷动力可以得到更充分的利用,具有“饥饿效应”优势;允许所有参与回流的污泥全部经历完整的释磷、吸磷过程,故在除磷方面具有“群体效应”优势;缺氧段位于工艺的首端,允许反硝化优先获得碳源,故进一步加强了系统的脱氮能力;工程上采取适当措施可以将回流污泥和内循环合并为一个外回流系统,因而流程简捷,宜于推广。(2)工艺的选定按照污水处理工艺流程选择的原则和要求,可得比较合适于西安市某污水处理厂的工艺是倒置A2/O法工艺。该工艺采用较短时间的初沉池或者不设初沉池,使进水中的细小有机悬浮固体有相当的一部分进入生物反应器,以满足反硝化菌和聚磷菌对碳源的需求,并使生物反应器中的污泥能达到较高的浓度;整个系统中的活性污泥都完整地经历过厌氧和好氧的过程,因此排放的剩余污泥中都能充分地吸收磷;避免了回流污泥中的硝酸盐对厌氧释磷的影响;由于反映其中活性污泥浓度较高,从而促进了好氧反应器中的同步硝化、反消化,提高了处理系统的脱氮除磷的效率。本法的具体工艺流程如图1所示。出水厌氧反应池缺氧反应池好氧反应池回流污泥(25%-100%)Q回流混合液(0-200%)Q鼓风机房细格栅粗及格泵栅站沉砂池砂水分离器栅渣砂渣剩余污泥污泥浓缩池脱水车间干泥外运上清液流至厂内污水管二沉池消毒池外运处置污水超越管图1 倒置A2/O法工艺流程图污水4 水处理各构筑物的选择及设计计算4.1进水闸井的设计4.1.1 污水厂进水管1.设计依据1:(1)进水流速在0.91.1m/s;(2)进水管管材为钢筋混凝土结构;(3)进水管按非满流设计,;2.设计计算(1)取进水管流速为,由给水排水设计手册(第四版)第1册查知,取管径为,设计坡度;(2)已知最大日污水量;(3)初定充满度 h/D=0.85,则有效水深;(4)已知管内底标高为392.38m,则水面标高为:393.44 (5)管顶标高为:;(6)进水管水面距地面距离。4.1.2 进水闸井工艺设计进水闸井的作用是汇集各种来水以改变进水方向,保证进水稳定性。进水闸井前设跨越管,跨越管的作用是当污水厂发生故障或维修时,可使污水直接排入水体,跨越管的管径比进水管略大,取为1400mm,进水闸井的设计要求如下:(1)设在进水闸、格栅、集水池前;(2)形式为圆形、矩形或梯形;(3)井底高程不得高于最低来水管管底,水面不得淹没来水管管顶。考虑施工方便以及水力条件,进水闸井尺寸取64.5m,井深 6.5m,井内水深1.2m,闸井井底标高为392.19m,进水闸井水面标高为 393.39m,超越管位于进水管顶1.0m处,即超越管管底标高为 394.63m。由水处理工程师手册第566页表6.1.3选用HZJ5I型闸门,其安装尺寸参数如下表2所示:表2 HZJ5I型闸门安装参数QEF(F1)G(G1)HH1d2PS25002000278012501125285(265)390(370)33201180180124.2格栅4.2.1格栅的作用及种类格栅由一组或数组平行的金属栅条、塑料齿钩或金属网、框架及相关装置组成,倾斜安装在污水渠道、泵房集水井的进口处或污水处理厂的前端,用来截留污水中较粗大漂浮物和悬浮物,如纤维、碎皮、毛发、果皮、蔬菜、木片、布条、塑料制品等,防止堵塞和缠绕水泵机组、曝气器、管道阀门、处理构筑物配水设施、进出水口,减少后续处理产生的浮渣,保证污水处理设施的正常运行。按照格栅形状,可分为平面格栅和曲面格栅;按照格栅净间距,可分为粗格栅(50-100mm)、中格栅(10-40mm)、细格栅(1.5-10mm)三种,平面格栅和曲面格栅都可以做成粗、中、细三种。本工艺采用矩形断面中格栅和细格栅各一道,采用机械清渣,中格栅设在污水提升泵房之前,细格栅设在提升泵房之后。4.2.2格栅的设计原则 本设计中格栅的设计原则主要有:(1)格栅的清渣方式有人工清渣和机械清渣,一般采用机械清渣;(2)机械格栅一般不宜少于两台;(3)过栅流速一般采用0.6-1.0m/s;(4)格栅前渠道内的水流速度一般采用0.4-0.9m/s;(5)格栅倾角一般采用;(6)通过格栅的水头损失一般采用0.08-0.15m;(7)格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m,工作台上应有安全和冲洗设施;(8)格栅间工作台两侧过道宽度不应小于0.7m,工作台正面过道宽度:人工清除不应小于1.2m,机械清除不应小于1.5m;(9)机械格栅的动力装置一般宜设在室内,或采取其他保护设施;(10)格栅间内应安装吊运设备,以利于进行格栅及其他设备的检修、栅渣的日常清理。4.2.3格栅的设计计算1中格栅的计算本设计中格栅的设计计算如下:前面计算可知:max=1.219m3/s,计算草图8图2 格栅示意图(1)格栅间隙数 式中: 栅条间隙Qmax最大设计流量,m3/s; 栅条间隙,m; 栅前水深,m; 污水流经格栅的速度,一般取0.61.0m/s; a格栅安装倾角,()取中格栅栅前水深为=1,格栅栅条间隙=20mm,过栅流速=0.9m/s,格栅安装倾角a=60,设置两台机械格栅,则每台格栅间隙数为:;则=32(2)栅槽宽度 式中:栅槽宽度,m;栅条宽度,取S=0.01m;栅条间隙,取=0.02m栅条间隙数,=32个;=m(3)进水渠道渐部分长度式中:进水渠道渐宽部分长度,m;B1进水渠道宽度,取B1=0.60m a1渐宽部分展开角度,取; (4)出水渠道渐窄部分长度(5)过栅水头损失通过格栅的水头损失可以按下式计算: 式中:设计水头损失,m;计算水头损失,m;重力加速度,m/s2;系数,格栅受污堵塞时水头损失增大倍数,一般采用3;阻力系数,其值与栅条锻炼形状有关。设格栅断面形状为锐边矩形,则 (6)栅后槽总高度 设栅前渠道超高,栅前水深,则 ,取1.4m(7)栅前槽高度 (8)栅槽总长度L (9)每日产生的栅渣量 式中: 每日栅渣量,单位体积污水栅渣量,中格栅间隙为20,取=0.05 生活污水总变化系数,=1.30.02,宜采用机械清渣每台格栅每日栅渣量(10)中格栅及格栅除污机选型由给水排水设计手册(第四版)第11册第521页查知,选用两台GH-1000链条回转式多耙格栅除污机,其规格及性能如下表3:表3 GH-1000链条回转式多耙格栅除污机的规格和性能参数型号格栅宽度()格栅净距(mm)安 装 角 a()过栅流速()电动机功率()GH-1000100020600.91.11.52细格栅的计算本设计中格栅的设计计算如下:(1)格栅间隙数 式中各项字母代表的意义同前, 取细格栅栅前水深为1.5m,格栅栅条间隙b=10mm,过栅流速0.9m/s,格栅安装倾角a=60,设置两台机械格栅,则每台格栅间隙数为:(2)栅槽宽度 式中:栅槽宽度,m;栅条宽度,取=0.01m;栅条间隙,取=0.01m;栅条间隙数,=42个;=0m(3)进水渠道渐部分长度式中:进水渠道渐宽部分长度,m;1进水渠道宽度,取1=0.60m; a1渐宽部分展开角度,取; (4)出水渠道渐窄部分长度(5)过栅水头损失通过格栅的水头损失可以按下式计算: 式中:设计水头损失,计算水头损失,重力加速度,/s2系数,格栅受污堵塞时水头损失增大倍数,一般采用3阻力系数,其值与栅条锻炼形状有关设格栅断面形状为锐边矩形 (6)栅后槽总高度设栅前渠道超高,栅前水深,则 ,取2.1m(7)栅前槽高度 (8)栅槽总长度L (9)每日产生的栅渣量 式中: 每日栅渣量,单位体积污水栅渣量,中格栅间隙为20,取=0.05 生活污水总变化系数,=1.30.02,宜采用机械清渣每台格栅每日栅渣量(10)细格栅及格栅除污机的选择 由给水排水设计手册(第四版)第11册第533页查知,选用两台XWB-08-15背耙式格栅除污机,其性能如下表4所示:表4 XWB-08-15背耙式格栅除污机型号格栅宽度(mm)耙齿有效长度(mm)安装倾角()提升质量(kg)格栅间距(mm)提升速度(m/min)电机功率(KW)XWB-08-15800100602001030.54.3沉砂池4.3.1沉砂池的作用及类型 污水中的无机颗粒不仅会磨损设备和管道,降低活性污泥活性,而且会板积在反应池底部减小反应池有效容积,甚至在脱水时扎破率带损坏脱水设备。沉砂池的设置目的就是去除污水中泥砂、煤渣等相对密度较大的无机颗粒,以免影响后续处理的构筑物的正常运行。常用的沉砂池的形式主要有平流式沉砂池、曝气沉砂池、旋流式沉砂池。平流式沉砂池是早期污水处理系统常用的一种形式,它具有截留无机颗粒效果较好、构造简单等有点,但也存在流速不易控制、沉砂中有机性颗粒含量较高、排砂常需要洗砂处理等缺点。旋流式沉砂池是利用机械力控制水流流态与流速、加速砂粒的沉淀并使有机物随流水带走的沉砂装置。曝气沉砂池在池的一侧通入空气,使污水沿池旋转前进,从而产生与主流垂直的横向恒速环流;曝气沉砂池还具有以下特点,通过调节曝气量,可以控制污水的旋流速度,使除砂效率较稳定,受流量的影响较小;沉砂中含有有机物量低于5%;由于池中设有曝气设备,它还具有预曝气、脱臭、除泡作用以及加速污水中油类和浮渣的分离等作用,这些特点对后续的沉淀池、曝气池、污泥消化池的正成运行以及对沉砂的最终处置提供了有利的条件。本设计中选用曝气沉砂池,其截面图如图3示。图3曝气沉砂池示意图1空气干管 2支管 3扩散设备 4头部支座 曝气沉砂池与细格栅合建,为地上式矩形混凝土结构,设为两格池子。4.3.2曝气沉砂池的设计参数 本设计中曝气沉砂池的设计参数有:(1)旋流速度应保持0.250.3m/s;(2)水平流速为0.060.12m/s;(3)最大流量时停留时间为13min;(4)有效水深为23m,宽深比一般采用12;(5)长宽比可达5,当池长比池宽大得多时,应考虑设计横向挡板;(6)每立方米污水的曝气量为0.10.2m3空气,或35 m3/(m2h);(7)空气扩散装置设在池的一侧,距池底约0.60.9m,送气管应设置调节气量的阀门;(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板。4.3.3曝气沉砂池的设计计算1池体的计算本设计中曝气沉砂池的设计计算如下1:(1)池子总有效容积V 式中:污水厂最大设计流量,=1.219m3/s;最大设计流量时的流行时间,取t=2min; (2)水流断面的面积A 式中:污水厂最大设计流量,=1.219m3/s;最大设计流量时的水平流速,取0.1 m/s;(3)池总宽度 式中: ,取 (4)校核宽深比 宽深比在12之间,符合要求(5)池体长L (6)校核长宽比 ,符合要求2曝气系统设计计算 本设计的曝气沉砂池的曝气系统设计计算:本设计的曝气沉砂池运用鼓风曝气系统,鼓风设备和倒置A2/O反应池空气系统设在同一机房,采用穿孔管曝气,穿孔曝气管设置在集砂槽一侧,距池底0.8,距池壁0.5m,则穿孔管的淹没深度为。(1)最大时所需空气量 式中: 每立方米污水所需空气量,0.10.2m3空气/ m3污水,取0.2m3空气/ m3污水/h=877.68 m3 / h(2)平均时所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑马javaweb考试题及答案
- 核磁考试题及答案
- 国画书法考试题及答案
- 农村环保项目治理及技术引进合同
- 法语课堂考试题及答案
- 客户服务热线接听流程快速响应手册
- 完善的供应链风险管理控制矩阵
- 德国作曲考试题及答案
- 内科护理学各章考试题库及答案
- 主管护师护理学讲题题库及答案
- GB/T 2878.1-2025液压传动连接普通螺纹斜油口和螺柱端第1部分:斜油口
- 2025年铁路货装值班员(高级)职业技能鉴定参考试题库(含答案)
- 转让叉车协议书模板
- 2025交通无障碍技术规范
- 《传统中医手诊》课件
- T-FSF 003-2024 杂交石斑鱼人工育苗技术规范
- T-CIRA 41-2022 同位素生产回旋加速器液态靶验收规范
- 伊斯兰教完整版本
- 计量经济学知到智慧树章节测试课后答案2024年秋安徽农业大学
- 《西方的文官制度》教学设计
- 外研版九年级英语上册单元模块满分必刷题 Module 1 【刷中考】(广东专用)(含答案)
评论
0/150
提交评论