平均与差异.doc_第1页
平均与差异.doc_第2页
平均与差异.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平均与差异平均指标平均指标又称平均或均值,反映的是现象在某一空间或时间上的平均数量状况。 多用于社会经济统计中,一般用平均数形式表示,因此也称为平均数。平均指标可以是同一时间的同类社会经济现象的一般水平,称为静态平均数,也可以是不同时间的同类社会经济现象的一般水平,称为动态平均数。 意义和作用平均指标在认识社会经济现象总体数量特征方面有重要作用,得到广泛应用。1、平均指标可以反映现象总体的综合特征。2、平均指标可以反映分配数列中各变量值分布的集中趋势。3、平均指标经常用来进行同类现象在不同空间、不同时间条件下的对比分析,从而反映现象在不同地区之间的差异,揭示现象在不同时间之间的发展趋势。 种类平均指标按计算和确定的方法不同,分为算术平均数、调和平均数、几何平均数、众数和中位数。前三种平均数是根据总体各单位的标志值计算得到的平均值,称作数值平均数。众数和中位数是根据标志值在分配数列中的位置确定的,称为位置平均数。 1.算术平均数算术平均数也成均值,是最常用的平均指标。它的基本公式形式是总体标志总量除以总体单位总量。在实际工作中,由于资料的不同,算术平均数有两种计算形式:即简单算术平均数和加权算术平均数。简单算术平均数适用于未分组的统计资料,如果已知各单位标志值和总体单位数,可采用简单算术平均数方法计算。加权算术平均数适用于分组的统计资料,如果已知各组的变量值和变量值出现的次数,则可采用加权算术平均数计算。加权算术平均数的大小受两个因素的影响:其一是受变量值大小的影响。其二是各组次数占总次数比重的影响。在计算平均数时,由于出现次数多的标志值对平均数的形成影响大些,出现次数少的标志值对平均数的形成影响小些,因此就把次数称为权数。在分组数列的条件下,当各组标志值出现的次数或各组次数所占比重均相等时,权数就失去了权衡轻重的作用,这时用加权算术平均数计算的结果与用简单算术平均数计算的结果相同。2.调和平均数调和平均数是总体各单位标志值倒数的算术平均数的倒数,又称为倒数平均数,由简单调和平均数和加权调和平均数。3.几何平均数几何平均数是n个变量值乘积的n次方根。在统计中,几何平均数常用于计算平均速度和平均比率。几何平均数也有简单平均和加权平均两种形式。 4.众数众数是指总体中出现次数最多的标志值。众数也是一种位置平均数。在实际工作中往往可以代表现象的一般水平,如市场上某种商品大多数的成交价格,多数人的服装和鞋帽尺寸等,都是众数。但只有在总体单位数多且有明显的集中趋势时,才可计算众数。 5.中位数将总体各单位的标志治安大小顺序排列,处于中间位置的标志值就是中位数。由于中位数是位置平均数,不受极端值的影响,在总体标志值差异很大的情况下,中位数具有很强的代表性。 应用平均指标应注意的问题1、计算和应用平均指标必须注意现象总体的同质性。2、用组平均数补充说明平均数。3、计算和运用平均数时,要注意极端数值的影响。4、在运用平均数分析时还应注意用分配数列补充说明平均数。5、把平均数与典型事例相结合。统计学中的差异经常在预防医学的文章里面看到P值小大于0.05,表差异有统计学意义。统计学意义(p值)ZT 结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。 在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05p0.01被认为是具有统计学意义,而0.01p0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。 所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。平均与差异的具体例子-贫富差距的分析一个国家的贫富差距不能太大,而如何表示贫富差距的大小。一般用基尼系数来表示,基尼系数大则贫富差距大,反之亦然。基尼系数由于给出了反映居民之间贫富差异程度的数量界线,可以较客观、直观地反映和监测居民之间的贫富差距,预报、预警和防止居民之间出现贫富两极分化,因此得到世界各国的广泛认同和普遍采用。基尼系数若低于0.2表示收入绝对平均;0.2-0.3表示比较平均;0.3-0.4表示相对合理;0.4-0.5表示收

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论