




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. 设、是单位向量,且0,则的最小值为 ( D )A. B. C. D.解析 是单位向量 .2. 已知向量,则 ( C ) A. B. C. D. 解析 ,故选C.3. 平面向量a与b的夹角为, 则( B ) A. B. C. 4 D.2解析 由已知|a|2,|a2b|2a24ab4b24421cos604124. 在中,M是BC的中点,AM=1,点P在AM上且满足学,则等于 ( A )A. B. C. D. 解析 由知, 为的重心,根据向量的加法, 则=5. 已知,向量与垂直,则实数的值为 ( )A. B. C. D.6. 设D、E、F分别是ABC的三边BC、CA、AB上的点,且则与(A )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直7. 已知,b是平面内两个互相垂直的单位向量,若向量满足,则的最大值是 ( C ) A.1 B.2 C. D.8. 已知是所在平面内一点,为边中点,且,那么()9. 设,在上的投影为,在轴上的投影为2,且,则为( )A B C D10. 设是非零向量,若函数的图象是一条直线,则必有( A )ABCD11. 设两个向量和,其中为实数若,则的取值范围是()-6,1 (-6,1-1,612. 已知向量,若与垂直,则( )AB CD413. 如图,已知正六边形,下列向量的数量积中最大的是(A )A., B. , C. , D. , 14. 已知向量,|1,对任意tR,恒有|t|,则 ( B )A. B.() C.() D.()() 15已知向量,的夹角为,若点M在直线OB上,则的最小值为( B )A B C D16在平行四边形中,与相交于点.若则CA. B. C. D. 17. 设向量与的夹角为,则等于 DA. B. C. D.18已知向量,的夹角为,且,则向量与向量 的夹角等于( D ) A B C D 19. 已知向量,其中、均为非零向量,则的取值范围是(B )A. B. C. D.20. 已知单位向量a,b的夹角为,那么( B )ABC2D21. 在ABC中, ( B ) A B CD122. 已知向量和的夹角为,且,则 ( C )A B C D23. 已知向量夹角的取值范围是( C )A BCD24(上海)直角坐标系中,分别是与轴正方向同向的单位向量在直角三角形中,若,则的可能值个数是(B)1 2 3 425若四边形满足,则该四边形一定是BA直角梯形B菱形C矩形D正方形26已知向量的夹角为,且,在ABC中,D为BC边的中点,则( A )A2B4C6D827. 已知, ,=0,,设,则 ( A ) A.3 B. C. D. 28. 如图,将45直角三角板和30直角三角板拼在一起,其中45直角三角板的斜边与30直角三角板的30角所对的直角边重合若,则x ,y等于B A BC D二、填空题1. 若向量,满足且与的夹角为,则答案 2. 设向量,若向量与向量共线,则 答案 23. 已知向量与的夹角为,且,那么的值为 答案 04. 已知平面向量,若,则_答案 5. ,的夹角为, 则 答案 76. 设向量_答案 7. 若向量与的夹角为,则 _.答案 8. 若向量,则向量的夹角等于 答案 9. O为平面上定点,A, B, C是平面上不共线的三若()()=0, 则DABC的形状是 . 等腰三角形10. 不共线的向量,的模都为2,若,则两向量与 的夹角为 9011定义一种运算,在框图所表达的算法中揭示了这种运算“”的含义.那么,按照运算“”的含义,计算_ 1 _12、已知向量,则的值为 .答案 113、 已知RtABC的斜边BC=5,则的值等于 .答案 2514. 在直角坐标系中,分别是与轴,轴平行的单位向量,若直角三角形中,则实数m= 答案 2或0三、解答题1、已知,(1)求的值; (2)求的夹角; (3)求的值;解:(1)又由得代入上式得,(2),故(3) 故2(1),且求向量与b的夹角;(2)设向量,在向量上是否存在点P,使得,若存在,求出点P的坐标,若不存在,请说明理由。3. 设向量 (1)若与垂直,求的值; (2)求的最大值; (3)若,求证:. 4. 已知向量与互相垂直,其中(1)求和的值; (2)若,求的值解 (1)与互相垂直,则,即,代入得,又,.(2),则,5. 已知向量(1)若,求的值; (2)若求的值。 解 (1) 因为,所以 于是,故(2)由知, 所以从而,即,于是.又由知,所以,或.因此,或 6、 已知向量(1)当时,求的值; (2)求在上的值域解(1),(5分)(2), 函数 (10分)7、已知ABC的面积S满足(1)求的取值范围;(2)求函数的最大值解 (1)由题意知. , (2)8、已知向量且,函数(I)求函数的最小正周期及单调递增区间;(II)若,分别求及的值。(I)解; 得到的单调递增区间为(II)9、在中,记的夹角为.()求的取值范围;()求函数的最大值和最小值.解 (1)由余弦定理知:,又,所以,又即为的取值范围;(),因为,所以,因此,. 10已知锐角三个内角分别为向量与向量 是共线向量(1)求的值;(2)求函数的值域解:(1),共线,(22sin A)(1sin A)(cos Asin A)(sin Acos A), sin2A.分又ABC为锐角三角形sin A,A. (2)y2sin2Bcos2sin2Bcos 2si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肇庆百万英才汇南粤-广宁县2025年事业单位招聘96人笔试历年参考题库附带答案详解
- 潍坊2025年山东潍坊市中医院高层次人才招聘40人笔试历年参考题库附带答案详解
- 制造业创新管理最佳实践总结
- 家校合作促进学生全面成长策略
- 人教版数学平行与垂直教学辅导稿
- 口腔科年度工作总结范例
- 企业微信办公系统应用指南与操作技巧
- 高中数学教学经验总结汇报
- 中医肩周炎诊疗与康复方案
- 企业总部门搬迁实施方案示范
- 中国老年患者术后谵妄防治专家共识
- 兄妹断绝协议书范文
- 2025年度火锅店合伙人合作协议书:特色火锅底料配方保密协议
- 岗位化验员述职报告
- 2023年价格鉴证师考试《价格鉴证案例分析》试题真题及答案二
- 2025年中信保诚人寿保险有限公司招聘笔试参考题库含答案解析
- 我的家乡沧州
- 两人合伙经营网吧协议
- 【课件】纪念长津湖吾辈当自强!课件 -2024年12.24纪念抗美援朝主题班会
- 2023-2024届高考语文复习小说专题训练(含答案)-李存葆《高山下的花环》
- 门式钢结构安装施工方案
评论
0/150
提交评论