




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学必修五第一章 正弦定理 练习A组基础巩固1在ABC中,已知b40,c20,C60,则此三角形的解的情况是()A有一解 B有两解C无解 D有解但解的个数不确定解析:由正弦定理,得sinB1.B不存在即满足条件的三角形不存在答案:C2在ABC中,角A、B、C的对边分别为a,b,c,且acosBacosCbc,则ABC的形状是()A等边三角形 B锐角三角形C钝角三角形 D直角三角形解析:acosBacosCbc,由正弦定理得,sinAcosBsinAcosCsinBsinCsin(AC)sin(AB),化简得:cosA(sinBsinC)0,又sinBsinC0,cosA0,即A,ABC为直角三角形答案:D3在ABC中,一定成立的等式是()AasinAbsinB BacosAbcosBCasinBbsinA DacosBbcosA解析:由正弦定理,得asinBbsinA.答案:C4在ABC中,已知B60,最大边与最小边的比为,则三角形的最大角为()A60 B75C90 D115解析:不妨设a为最大边,c为最小边,由题意有,即.整理,得(3)sinA(3)cosA.tanA2,A75,故选B.答案:B5在ABC中,BAC120,AD为角A的平分线,AC3,AB6,则AD的长是()A2B2或4 C1或2D5解析:如图,由已知条件可得DACDAB60.AC3,AB6,SACDSABDSABC,3AD6AD36,解得AD2.答案:A6在ABC中,A60,BC3,则ABC的两边ACAB的取值范围是()A3,6 B(2,4)C(3,4 D(3,6解析:由正弦定理,得.AC2sinB,AB2sinC.ACAB2(sinBsinC)2sinBsin(120B)2266sin(B30)0B120,30B30150.sin(B30)1.36sin(B30)6.3ACAB6.答案:D7已知在ABC中,ab,A,B,则a的值为_解析:由正弦定理,得ba.由abaa,解得a33.答案:338若三角形三个内角的比是123,最大的边是20,则最小的边是_解析:三个内角和为180,三个内角分别为30,60,90.设最小的边为x,最大的边为20,x10,最小的边是10.答案:109在ABC中,B45,AC,cosC,求BC边的长解:cosC,sinC.sinAsin(BC)sin(45C)(cosCsinC).由正弦定理可得:BC3.10在ABC中,角A,B,C所对的边分别为a,b,c.已知a3,cosA,BA.(1)求b的值;(2)求ABC的面积解:(1)在ABC中,由题意知sinA,又因为BA,所以sinBsincosA.由正弦定理可得b3.(2)由BA得cosBcossinA,由ABC,得C(AB)所以sinCsin(AB)sin(AB)sinAcosBcosAsinB.因此ABC的面积SabsinC33.B组能力提升11若ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinBbcos2Aa,则()A2 B2C. D.解析:由正弦定理得,sin2AsinBsinBcos2AsinA,即sinB(sin2Acos2A)sinA,故sinBsinA,所以.答案:D12已知在ABC中,ABC123,a1,则_.解析:ABC123,A30,B60,C90.2,a2sinA,b2sinB,c2sinC.2.答案:213.如图,D是RtABC斜边BC上一点,ABAD,记CAD,ABC.(1)证明:sincos20;(2)若ACDC,求的值解:(1)证明:(2)2,sinsincos2,即sincos20.(2)解:在ADC中,由正弦定理,得,即,sinsin.由(1)得sincos2,sincos2(12sin2),由2sin2sin0,解得sin或sin.0,sin,.14在ABC中,已知,且cos(AB)cosC1cos2C.(1)试确定ABC的形状;(2)求的取值范围解:(1),b2a2ab.cos(AB)cosC1cos2C,cos(AB)cos(AB)2sin2C.cosAcosBsinAsinBcosAcosBsinAsinB2sin2C.2sinAsinB2sin2C.sinAsinBsin2C.ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030传统木工技艺在当代实木产品中的应用价值报告
- 共享智能办公设备租赁合同
- 劳务合同中的违约责任解析
- 公司网站进行功能开发合同5篇
- 2025年城市公园绿化实施规划可行性研究报告
- 智能家居安全竞品分析2025年技术可行性研究报告
- 2025年市场适应能力评估研究报告人工智能在医疗影像诊断中的应用
- 动产租赁合同示范文本
- 教育产品代理合作合同模板
- 智能交通规划2025年城市交通规划与交通规划信息化建设可行性研究报告
- 24.1.1《圆》数学人教版九年级上册教学课件
- 乳品领域:认养一头牛企业组织架构及部门职责
- 宠物乐园方案
- 自备车补贴申请表
- 注塑成型技术培训之工艺理解课件
- 信息论与编码(第4版)完整全套课件
- 广西佑太药业有限责任公司医药中间体项目环评报告书
- 汽修厂安全风险分级管控清单
- 海绵城市公园改造施工组织设计
- 上体自编教材-体育运动概论-模拟
- 05625《心理治疗》案例分析
评论
0/150
提交评论