



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节 微分方程在经济学中的应用微分方程在经济学中有着广泛的应用,有关经济量的变化、变化率问题常转化为微分方程的定解问题一般应先根据某个经济法则或某种经济假说建立一个数学模型,即以所研究的经济量为未知函数,时间t为自变量的微分方程模型,然后求解微分方程,通过求得的解来解释相应的经济量的意义或规律,最后作出预测或决策,下面介绍微分方程在经济学中的几个简单应用一、 供需均衡的价格调整模型在完全竞争的市场条件下,商品的价格由市场的供求关系决定,或者说,某商品的供给量S及需求量D与该商品的价格有关,为简单起见,假设供给函数与需求函数分别为S=a1+b1P, D=a-bP,其中a1,b1,a,b均为常数,且b10,b0;P为实际价格供需均衡的静态模型为显然,静态模型的均衡价格为Pe=对产量不能轻易扩大,其生产周期相对较长的情况下的商品,瓦尔拉(alras)假设:超额需求D(P)-S(P)为正时,未被满足的买方愿出高价,供不应求的卖方将提价,因而价格上涨;反之,价格下跌,因此,t时刻价格的变化率与超额需求D-S成正比,即=k(D-S),于是瓦尔拉假设下的动态模型为整理上述模型得=l(Pe-P),其中l=k(b+b1)0,这个方程的通解为P(t)=Pe+Ce-lt假设初始价格为P(0)=P0,代入上式得,C=P0-Pe,于是动态价格调整模型的解为P(t)=Pe+(P0-Pe)e-lt,由于l0,故=Pe这表明,随着时间的不断延续,实际价格P(t)将逐渐趋于均衡价格Pe二、 索洛(Solow)新古典经济增长模型设Y(t)表示时刻t的国民收入,K(t)表示时刻t的资本存量,L(t)表示时刻t的劳动力,索洛曾提出如下的经济增长模型:其中s为储蓄率(s0),l为劳动力增长率(l0),L0表示初始劳动力(L00),r=称为资本劳力比,表示单位劳动力平均占有的资本数量将K=rL两边对t求导,并利用=lL,有又由模型中的方程可得=sLf(r,1),于是有+lr=sf(r,1) (10-4-1)取生产函数为柯布-道格拉斯(Cobb-Douglas)函数,即f(K,L)=A0KaL1-aA0Lra,其中A00,0a1均为常数易知f(r,1)=A0ra,将其代入(10-4-1)式中得+lr=sA0ra (10-4-2)方程两边同除以ra,便有r-a+lr1-a=sA0令r1-a=z,则=(1-a)l-a ,上述方程可变为+(1-a)lz=sA0(1-a)这是关于z的一阶非齐次线性方程,其通解为z=Ce-l(1-a)t+ (C为任意常数)以z=r1-a代入后整理得r(t)=当t=0时,若r(0)=r0,则有C=r01-aA0于是有r(t)= 因此, 事实上,我们在(10-4-2)式中,令=0,可得其均衡值re=.三、 新产品的推广模型设有某种新产品要推向市场,t时刻的销量为x(t),由于产品良好性能,每个产品都是一个宣传品,因此,t时刻产品销售的增长率与x(t)成正比,同时,考虑到产品销售存在一定的市场容量N,统计表明与尚未购买该产品的潜在顾客的数量N-x(t)也成正比,于是有=kx(N-x), (10-4-3)其中k为比例系数,分离变量积分,可以解得x(t)= (10-4-4)方程(10-4-3)也称为逻辑斯谛模型,通解表达式(10-4-4)也称为逻辑斯谛曲线由=以及=,当x(t*)N时,则有0,即销量x(t)单调增加当x(t*)=时,=0;当x(t*)时,0;当x(t*)时,0即当销量达到最大需求量N的一半时,产品最为畅销,当销量不足N一半时,销售速度不断增大,当销量超过一半时,销售速度逐渐减小国内外许多经济学家调查表明,许多产品的销售曲线与公式(10-4-4)的曲线十分接近,根据对曲线性状的分析,许多分析家认为,在新产品推出的初期,应采用小批量生产并加强广告宣传,而在产品用户达到20%到80%期间,产品应大批量生产,在产品用户超过80%时,应适时转产,可以达到最大的经济效益习题10-41 某公司办公用品的月平均成本C与公司雇员人数x有如下关系:C=C2e-x-2C且C(0)=1,求C(x)2 设R=R(t)为小汽车的运行成本,S=S(t)为小汽车的转卖价值,它满足下列方程:R=, S=-bS,其中a,b为正的已知常数,若R(0)=0,S(0)=S0(购买成本),求R(t)与S(t)3 设D=D(t)为国民债务,Y=Y(t)为国民收入,它们满足如下的关系:D=aY+b, Y=gY其中a,b,g为正已知常数(1) 若D(0)=D0,Y(0)=Y0,求D(t)和Y(t);(2) 求极限4 设C=C(t)为t时刻的消费水平,I=I(t)为t时刻的投资水平,Y=Y(t)为t时刻的国民收入,它们满足下列方程(1) 设Y(0)=Y0,求Y(t),C(t),I(t);(2) 求极限5 某养殖场在一池塘内养鱼,该池塘最多能养鱼5000条,鱼可以自
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程技术服务劳动协议年
- 项目管理中的能力提升试题及答案
- 工程项目管理人才发展试题及答案
- 网络游戏开发测试与上线合同
- 工程项目风险控制的方法试题及答案
- 小学生生命安全教育
- 提升企业核心竞争力的总结计划
- 通过社交反馈增强品牌价值计划
- 2025年工程项目管理核心能力试题及答案
- 工程经济学的应用实例分析试题与答案
- 2025年人教版小学一年级下学期奥林匹克数学竞赛试题(附答案解析)
- 《社会保险知识普及教学课件》
- 延安通和电业有限责任公司招聘笔试真题2024
- 上海市松江区2024-2025学年七年级下学期期中数学试卷
- 2024年新疆吉木乃县事业单位公开招聘辅警23名笔试题带答案
- 统编版2024-2025第二学期小学六年级期末语文测试卷(有答案)
- 昆明理工大学津桥学院教职工招聘真题2024
- 品质组长考试试题及答案
- 2025年高考语文大题突破训练:微写作(北京专用)解析版
- 设备合同三方付款协议
- 2025年田径三级裁判试题及答案
评论
0/150
提交评论