§6.4 数列求和知识点及题型和变式练习.doc_第1页
§6.4 数列求和知识点及题型和变式练习.doc_第2页
§6.4 数列求和知识点及题型和变式练习.doc_第3页
§6.4 数列求和知识点及题型和变式练习.doc_第4页
§6.4 数列求和知识点及题型和变式练习.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.4数列求和考试会这样考1.考查等差、等比数列的求和;2.以数列求和为载体,考查数列求和的各种方法和技巧;3.综合考查数列和集合、函数、不等式、解析几何、概率等知识的综合问题复习要这样做1.灵活掌握数列由递推式求通项公式的几种方法;2.掌握必要的化归方法与求和技巧,根据数列通项的结构特点,巧妙解决数列求和的问题1 等差数列前n项和Snna1d,推导方法:倒序相加法;等比数列前n项和Sn推导方法:乘公比,错位相减法2 数列求和的常用方法(1)分组求和:把一个数列分成几个可以直接求和的数列(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和. (3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和(4)倒序相加:例如,等差数列前n项和公式的推导(5)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(10099)(9897)(21)5 050.3 常见的拆项公式(1);(2);(3).难点正本疑点清源1 解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和2 等价转化思想是解决数列问题的基本思想方法,它可将复杂的数列转化为等差、等比数列问题来解决1 在等差数列an中,Sn表示前n项和,a2a818a5,则S9_.2 等比数列an的公比q,a81,则S8_.3 若Sn1234(1)n1n,则S50_.4 (2011天津)已知an为等差数列,其公差为2,且a7是a3与a9的等比中项,Sn为an的前n项和,nN*,则S10的值为 ()A110 B90 C90 D1105 (2012大纲全国)已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为()A. B. C. D.题型一分组转化求和例1已知数列xn的首项x13,通项xn2npnq (nN*,p,q为常数),且x1,x4,x5成等差数列求:(1)p,q的值;(2)数列xn前n项和Sn的公式思维启迪:第(1)问由已知条件列出关于p、q的方程组求解;第(2)问分组后用等差、等比数列的求和公式求解解(1)由x13,得2pq3,又因为x424p4q,x525p5q,且x1x52x4,得325p5q25p8q,解得p1,q1.(2)由(1),知xn2nn,所以Sn(2222n)(12n)2n12.探究提高某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化特别注意在含有字母的数列中对字母的讨论 求和Sn1.题型二错位相减法求和例2设数列an满足a13a232a33n1an,nN*.(1)求数列an的通项;(2)设bn,求数列bn的前n项和Sn.思维启迪:(1)由已知写出前n1项之和,两式相减(2)bnn3n的特点是数列n与3n之积,可用错位相减法解(1)a13a232a33n1an,当n2时,a13a232a33n2an1,得3n1an,an.在中,令n1,得a1,适合an,an.(2)bn,bnn3n.Sn3232333n3n,3Sn32233334n3n1.得2Snn3n1(332333n),即2Snn3n1,Sn.探究提高解答本题的突破口在于将所给条件式视为数列3n1an的前n项和,从而利用an与Sn的关系求出通项3n1an,进而求得an;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养 (2011辽宁)已知等差数列an满足a20,a6a810.(1)求数列an的通项公式;(2)求数列的前n项和题型三裂项相消法求和例3在数列an中,a11,当n2时,其前n项和Sn满足San.(1)求Sn的表达式;(2)设bn,求bn的前n项和Tn.思维启迪:第(1)问利用anSnSn1 (n2)后,再同除Sn1Sn转化为的等差数列即可求Sn.第(2)问求出bn的通项公式,用裂项相消求和解(1)San,anSnSn1 (n2),S(SnSn1),即2Sn1SnSn1Sn,由题意Sn1Sn0,式两边同除以Sn1Sn,得2,数列是首项为1,公差为2的等差数列12(n1)2n1,Sn.(2)又bn,Tnb1b2bn(1)()().探究提高使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的 已知数列an的各项均为正数,前n项和为Sn,且Sn,nN*.(1)求证:数列an是等差数列;(2)设bn,Tnb1b2bn,求Tn.四审结构定方案典例:(12分)已知等差数列an满足:a37,a5a726,an的前n项和为Sn.(1)求an及Sn;(2)令bn(nN*),求数列bn的前n项和Tn.审题路线图等差数列an中,特定项的值(a3,a5,a7即为特定项)a37,a5a726(从特定项,考虑基本量a1,d)列方程组(根据条件的结构特征,确定了方程的方法)用公式:ana1(n1)d,Snna1d.(将an代入化简求bn)bn(根据bn的结构特征,确定裂项相消)bnTn.规范解答解(1)设等差数列an的首项为a1,公差为d.因为a37,a5a726,所以解得4分所以an32(n1)2n1,Sn3n2n22n.6分(2)由(1)知an2n1,所以bn,8分所以Tn(1)10分(1),即数列bn的前n项和Tn.12分温馨提醒本题审题的关键有两个环节一是根据a37,a5a726的特征,确定列方程组求解二是根据数列bn的通项bn的特征,确定用裂项相消法求和所以,在审题时,要根据数式的结构特征确定解题方案.方法与技巧数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列的和或差数列的求和失误与防范1通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,或拆为基本数列求和,或转化为基本数列求和求和过程中同时要对项数作出准确判断2含有字母的数列求和,常伴随着分类讨论A组专项基础训练(时间:35分钟,满分:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论