




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
104 1C 18 1.Vg9$K 1. yeRf(t)dt = F(t) + CKRf(ax + b)dx = 1 aF(ax + b) + C. yRf(t)dt = F(t) + CF(t) + C0= f(t)K ? 1 aT(ax + b) ?0 = 1 aF(ax + b) 0 = f(ax + b)u Rf(ax + b)dx = 1 aF(ax + b) + C. 2. e (1) Z (2 sec2x)dx (2) Z ? x4 2x3+ x 2 ? dx (3) Z ? x + 3 x + 2 x+ 2 3 x 2 ? dx (4) Z ? ex+ 1 x + 1 x2 + 1 x3 ? dx (5) Z ? 2cosx + 1 2 sinx ? dx (6) Z ? cosx 2 1 + x2 + 1 41 x2 ? dx (7) Z ?1 2 cosx + sinx + 1 ? dx (8) Z ? 2x+ ? 1 3 ?x ex 5 ? dx (9) Z (3 x2)3dx (10) Z ? 1 1 x2 ?q xxdx ) (1) Z (2 sec2x)dx = 2x tanx + C (2) Z ? x4 2x3+ x 2 ? dx = 1 5x 5 1 2x 4 + 1 3x 3 2+ C (3) Z ? x + 3 x + 2 x+ 2 3 x 2 ? dx = 2 3x 3 2+ 3 4x 4 3 2x + 3x 2 3+ 4x 1 2+ C (4) Z ? ex+ 1 x + 1 x2 + 1 x3 ? dx = ex+ ln|x| 1 x 1 2x2 + C (5) Z ? 2cosx + 1 2 sinx ? dx = 2sinx 1 2 cosx + C (6) Z ? cosx 2 1 + x2 + 1 41 x2 ? dx = sinx 2arctanx + 1 4 arcsinx + C (7) Z ?1 2 cosx + sinx + 1 ? dx = 1 2 sinx cosx + x + C (8) Z ? 2x+ ? 1 3 ?x ex 5 ? dx = 1 ln22 x 1 ln3 ? 1 3 ?x ex 5 + C (9) Z (3 x2)3dx = Z (27 27x2+ 9x4 x6)dx = 27x 9x3+ 9 5x 5 1 7x 7 + C (10) Z ? 1 1 x2 ?q xxdx = Z (x 3 4 x 5 4)dx = 4 7x 7 4+ 4x 1 4+ C 105 2.O 1. e (1) Z dx 5x 7 (2) Z cos(t )dt (3) Z dx r 1 ?x 2 + 3 ?2 (4) Z dx 1 2x2 (5) Z tan10xsec2xdx (6) Z ex 2xdx (7) Z (2x+ 3x)2dx (8) Z tanxdx (9) Z tan p 1 + x2 xdx 1 + x2 (10) Z (x2+ )xdx( 6= 1) (11) Z dx 1 cosx (12) Z dx A2sin2x + B2cos2x (13) Z sinx cosx 1 + sin4x dx (14) Z dx sin2 ? x + 4 ? (15) Z x2 8 p 1 + x3dx (16) Z sin2xcosx 1 + sin3x dx (17) Z 1 2sinx cos2x dx (18) Z dx ex+ ex (19) Z sinx + cosx 3 sinx cosxdx (20) Z 1 + sin2x sin2x dx (21) Z s ln(x + 1 + x2) 1 + x2 dx (22) Z dx 1 + e2x (23) Z dx x2 2x + 2 (24) Z dx (arcsinx)21 x2 106 (25) Z x2+ 7 x2 2x 3 dx (26) Z x2 1 x4+ 1 dx ) (1) Z dx 5x 7 = 1 5 Z d(5x 7) 5x 7 = 1 5 ln|5x 7| + C (2) Z cos(t )dt = 1 Z cos(t )d(t ) = 1 sin(t ) + C (3) Z dx r 1 ?x 2 + 3 ?2 = 2 Z d ?x 2 + 3 ? r 1 ?x 2 + 3 ?2 = 2arcsin ?x 2 + 3 ? + C (4) Z dx 1 2x2= 2 2 Z d(x) q 1 (2x)2 = 2 2 arcsin(2x) + C (5) Z tan10xsec2xdx = Z tan10xd(tanx) = 1 11 tan11x + C (6) Z ex 2xdx = Z (2e)xdx = (2e)x ln(2e) + C (7) Z (2x+ 3x)2dx = Z (4x+ 2 6x+ 9x)dx = 4x ln4 + 2 ln66 x + 9x ln9 + C (8) Z tanxdx = Z sinx cosx dx = Z d(cosx) cosx = ln|cosx| + C = ln|secx| + C (9) Z tan p 1 + x2 xdx 1 + x2= Z tan p 1 + x2d( p 1 + x2) = ln|sec p 1 + x2| + C (10) Z (x2+ )xdx = 1 2 Z (x2+ )d(x2+ ) = (x2+ )+1 2( + 1) + C (11) Z dx 1 cosx = Z csc2 x 2 d ?x 2 ? = cot x 2 + C (12) Z dx A2sin2x + B2cos2x = 1 AB Z 1 1 + ? A B ?2 tan2x dAtanx B = 1 AB arctan ? A B tanx ? + C (13) Z sinx cosx 1 + sin4x dx = 1 2 Z 1 1 + (sin2x)2 d(sin2x) = 1 2 arctan(sin2x) + C (14) Z dx sin2 ? x + 4 ? = Z csc2 ? x + 4 ? d ? x + 4 ? = cot ? x + 4 ? + C (15) Z x2 8 p 1 + x3dx = 1 3 Z 8 p 1 + x3d(1 + x3) = 8 27(1 + x 3)9 8+ C (16) Z sin2xcosx 1 + sin3x dx = 1 3 Z d(1 + sin3x) 1 + sin3x = 1 3 ln(1 + sin3x) + C (17) Z 1 2sinx cos2x dx = Z sec2xdx + 2 Z dcosx cos2x = tanx 2secx + C (18) Z dx ex+ ex = Z dex e2x+ 1 = arctan(ex) + C (19) Z sinx + cosx 3 sinx cosxdx = Z d(sinx cosx) 3 sinx cosx= 3 2(sinx cosx) 2 3+ C (20) Z 1 + sin2x sin2x dx = Z csc2xdx + Z d(sin2x) sin2x = cotx + ln(sin2x) + C = cotx + 2ln|sinx| + C (21) Z s ln(x + 1 + x2) 1 + x2 dx = Z q ln(x + p 1 + x2)d(ln(x + p 1 + x2) = 2 3ln(x + p 1 + x2 3 2+ C 107 (22) Z dx 1 + e2x= Z dex 1 + e2x= ln(ex+ p 1 + e2x) + C (23) Z dx x2 2x + 2 = Z d(x 1) (x 1)2+ 1 = arctan(x 1) + C (24) Z dx (arcsinx)21 x2 = Z d(arcsinx) (arcsinx)2 = 1 arcsinx + C (25) Z x2+ 7 x2 2x 3 dx = Z ? 1 + 2x + 10 (x + 1)(x 3) ? dx = Z ? 1 2 x + 1 + 4 x 3 ? dx = x 2ln|x + 1| + 4ln|x 3| + C = x + 2ln (x 3)2 |x + 1| + C (26) Z x2 1 x4+ 1 dx = Z 1 x2 x2+ x2 dx = Zd ? x + 1 x ? ? x + 1 x ?2 2 = 2 4 ln ? ? ? ? ? ? ? x + 1 x 2 x + 1 x + 2 ? ? ? ? ? ? ? + C = 2 4 ln ? ? ? ? x2 2x + 1 x2+ 2x + 1 ? ? ? ?+ C 2. e (1) Z sin x xdx (2) Z (2u + 1)2 u2 du (3) Z e x+1 dx (4) Z x2 4 x2dx (5) Z p x2+ a2dx (6) Z p x2 a2dx (7) Z dx p(x a)(b x) (8) Z dx x2px2+ (9) Z xdx 5 + x x2 (10) Z p 2 + x x2dx ) (1) Z sin x xdx = 2 Z sin xd(x) = 2cosx + C (2) Z (2u + 1)2 u2 du = Z ? 4 u + 4 u 3 2 + 1 u2 ? du = 4ln|u| 8u 1 2 1 u + C (3) -1 + x = tKx = t21, dx = 2tdtu Z e x+1 dx = 2 Z tetdt = 2(t1)et+C = 2(1 + x 1)e 1+x + C (4) Z x2 4 x2dx = Z 4 x2 4 4 x2dx = Z p 4 x2dx + 4 Z dx 4 x2= x 2 p 4 x2 2arcsin x 2 + 4arcsin x 2 + C = 2arcsin x 2 x 2 p 4 x2+ C 108 (5) I = Z p x2+ a2dx = x p x2+ a2 Z x2 x2 + a2 dx = x p x2+ a2 Z p x2+ a2dx+ Z a2 x2 + a2 dx = x p x2+ a2 I + a2ln|x + p x2+ a2| + C1 u2I = xx2+ a2+a2ln|x+ x2 + a2|+C1l I = x 2 p x2+ a2+ a2 2 ln(x+ p x2+ a2)+C(C = C1 2 ) (6) I = Z p x2 a2dx = x p x2 a2 Z x2 x2 a2 dx = x p x2 a2 Z p x2 a2dx Z a2 x2 a2 dx = x p x2 a2 I a2ln|x + p x2 a2| + C1 u2I = xx2 a2a2ln|x+ x2 a2|+C1l I = x 2 p x2 a2 a2 2 ln(x+ p x2 a2)+C(C = C1 2 ) (7) Z dx p(x a)(b x)= Z dx px2 (a + b)x ab = Zd ? x a + b 2 ? s ? x a + b 2 ?2 + ? a b 2 ?2 = arcsin x a + b 2 a b 2 + C = arcsin 2x a b a b + Ca 0) (12) Z xdx 4 px3(a x) (13) Z x p x4+ 2x2 1dx (14) Z p 2 + x x2dx (15) Z x2dx 1 + x x2 (16) Z x2+ 1 xx4+ 1 dx (17) Z sin6xdx (18) Z sin2xcos4xdx (19) Z sin4xcos4xdx (20) Z cos4x sin3x dx (21) Z dx sin3xcos5x (22) Z tanx tan(x + a)dx 112 (23) Z sin5xcosxdx (24) Z sin2x 1 + sin2x dx (25) Z dx sin(x + a)sin(x + b) (26) Z xexcosxdx (27) Z dx (2 + cosx)sinx (28) Z ln(x + p 1 + x2)2dx (29) Z sinxcosx sinx + cosx dx (30) Z lnx (1 + x2) 3 2 dx (31) Z xexsinxdx (32) Z x3arccosx 1 x2dx (33) Z (x + |x|)2dx (34) Z x2excosxdx (35) Z xex (1 + x)2 dx (36) Z xln2 xdx (37) Z dx p(x a)(b x) (38) Z xln 1 + x 1 x dx (39) Z xarctanx ln(1 + x2)dx (40) Z sinh2xcosh2xdx ) (1) -tan x 2 = tKcosx = 1 t2 1 + t2 , dx = 2dt 1 + t2 u Z dx 4 + 5cosx = Z 2 (3 t)(3 + t) dt = 1 3 ln ? ? ? ? 3 + t 3 t ? ? ? ?+ C = 1 3 ln ? ? ? ? ? ? 3 + tan x 2 3 tan x 2 ? ? ? ? ? ? + C (2) -tan x 2 = tKsinx = 2t 1 + t2 ,tanx = 2t 1 t2 , dx = 2dt 1 + t2 u Z dx sinx + tanx = Z 1 t2 2t dt = 1 2 ln|t| t2 4 + C = 1 2 ln ? ? ?tan x 2 ? ? ? 1 4 ? tan x 2 ?2 + C (3) Z xdx 5 + x x2= Z xdx s 21 4 ? x 1 2 ?2 = Z x 1 2 s 21 4 dx ? x 1 2 ?2+ 1 2 Z dx s 21 4 ? x 1 2 ?2 = s 21 4 ? x 1 2 ?2 + 1 2 arcsin x 1 2 21 2 + C = p 5 + x x2+ 1 2 arcsin 2x 1 21+ C 113 (4) -t = 4 1 + x4Kx = 4 t4 1,dx = t3(t4 1) 3 4dt u Z 1 x 4 1 + x4dx = Z t2 t4 1 = 1 4 Z ? 1 t 1 1 t + 1 ? dt+1 2 Z 1 1 + t2 dt = 1 4 ln ? ? ? ? t 1 t + 1 ? ? ? ?+ 1 2 arctant+ C = 1 4 ln ? ? ? ? 4 1 + x4 1 4 1 + x4 + 1 ? ? ? ?+ 1 2 arctan( 4 p 1 + x4) + C (5) Z xdx 2 + 4x= 1 2 Z xd4x + 2 = 1 2x 2 + 4x 1 2 Z (2 + 4x) 1 2dx = x 2 2 + 4x 1 12(2 + 4x) 3 2+ C (6) Z cosx 1 + sinx dx = Z dsinx 1 + sinx = ln(1 + sinx) + C (7) - 6 x = tKx = t6, dx = 6t5 dt u Z dx x(1 + 2x + 3 x)= 6 Z dt t(1 + 2t3+ t2) = 6 Z ?1 t 1 4(t + 1) 6t 1 4(2t2 t + 1) ? dt q Z 6t 1 4(2t2 t + 1) dt = 3 8 Z d(2t2 t + 1) 2t2 t + 1 +1 8 Z dt 2t2 t + 1 = 3 8 ln|2t2t+1|+ 1 47 arctan 4t 1 7+ C1 l Z dx x(1 + 2x + 3 x)= 6ln|t| 3 2 ln|t+1| 9 4 ln|2t2t+1| 3 27 arctan 4t 1 7+C = 6ln| 6 x| 3 2 ln| 6 x+1|9 4 ln|2 3 x 6 x+1| 3 27 arctan 4 6 x 1 7+C = 3 4 ln x 3 x (1 + 6 x)2(2 3 x 6 x + 1)3 3 27 arctan 4 6 x 1 7+ C (8) Z x + 1 x 1 x + 1 +x 1dx = Z (x + 1 x 1)2 (x + 1 + x 1)(x + 1 x 1)dx = Z (x p x2 1)dx = x2 2 x 2 p x2 1 + 1 2 ln|x + p x2 1| + C (9) - 3 r x + 1 x 1 = tKx = t3+ 1 t3 1, dx = 6t2 (t3 1)2 dt u Z dx 3 p(x + 1)2(x 1)4= 3 2 Z dt = 3 2t + C = 3 2 3 r x + 1 x 1 + C (10) - 4 x = tKx = t4, dx = 4t3 dt u Z dx x(1 + 4 x)3= 4 Z t (1 + t)3 dt = 4 Z ? 1 (1 + t)2 1 (1 + t)3 ? dt = 4 1 + t + 2 (1 + t)2 + C = 4 1 + 4 x+ 2 (1 + 4 x)2+ C (11) Z dx ax2 + bx + c = 1 a Zd ? a ? x + b 2a ? ? a ? x + b 2a ?2 + 4ac b2 4a = 1 aln ? ? ? ? a ? x + b 2a ? + p ax2+ bx + c ? ? ? ?+ C (12) - 4 r a x x = t u Z xdx 4 px3(a x)= Z 4at2 (1 + t4)2 dt = 4a Z ? t (t2+ 2t + 1)(t2 2t + 1) ?2 dt = a 2 Z dt (t2 2t + 1)2a 2 Z dt (t2+ 2t + 1)2+a Z dt t4+ 1 q Z dt (t2 2t + 1)2= Zd ? t 2 2 ? “? t 2 2 ?2 + 1 2 #2= 2t 2 2(t2 2t + 1)+ 2arctan(2t 1) + C 1 Z dt (t2+ 2t + 1)2= 2t + 2 2(t2+ 2t + 1)+ 2arctan(2t + 1) + C 2 Z 1 t4+ 1 dt = 1 2 Z t2+ 1 t4+ 1 dt 1 2 Z t2 1 t4+ 1 dt 114 Z t2+ 1 t4+ 1 dt = Z 1 + 1 t2 t2+ 1 t2 dt = Zd ? t 1 t ? ? t 1 t ?2 + 2 = 1 2arctan t2 1 2t+ C3, Z t2 1 t4+ 1 dt = 1 22 ln t2 2t + 1 t2+ 2t + 1+ C4 l Z xdx 4 px3(a x)= at3 1 + t4 a 2 2 arctan 2t 1 t2 + a 42 ln ? ? ? ? t2+ 2t + 1 t2 2t + 1 ? ? ? ?+ a 22 arctan t2 1 2t+C t = 4 r a x x . (13) Z x p x4+ 2x2 1dx = 1 2 Z p (x2+ 1)2 2dx2= x2+ 1 4 p x4+ 2x2 11 2 ln(x2+1+ p x4+ 2x2 1)+ C (14) Z p 2 + x x2dx = Z s 9 4 ? x 1 2 ?2 dx = 2x 1 4 p 2 + x x2+ 9 8 arcsin 2x 1 3 + C (15) Z x2dx 1 + x x2= Z p 1 + x x2dx+ Z x + 1 1 + x x2dx = 2x 1 4 p 1 + x x25 8 arcsin 2x 1 5 p 1 + x x2+ 3 2 arcsin 2x 1 5+ C = 2x + 3 4 p 1 + x x2+ 7 8 arcsin 2x 1 5+ C (16) Z x2+ 1 xx4+ 1 dx = Z 1 + 1 x2 r x2+ 1 x2 dx = Zd ? x 1 x ? s? x 1 x ?2 + 2 = ln x 1 x + r x2+ 1 x2 ! +C = ln ? ? ? ? x2 1 + x4 + 1 x ? ? ? ?+ C (17) Z sin6xdx = Z ?1 cos2x 2 ?3 dx = 1 8 Z (1 3cos2x + 3cos22x cos32x)dx = 1 8x 3 16 sin2x + 3 16 Z (1+cos4x)dx 1 16 Z cos22xdsin2x = 1 8x 3 16 sin2x+ 3 16x+ 3 64 sin4x 1 16 sin2x+ 1 48 sin32x+ C = 5 16x 1 4 sin2x + 3 64 sin4x + 1 48 sin32x + C (18) Z sin2xcos4xdx = 1 5 Z sinxdcos5x = 1 5 sinxcos5x + 1 5 Z cos6x = 1 5 sinxcos5x + 1 5 ? 5 16x 1 4 sin2x + 3 64 sin4x + 1 48 sin32x ? + C = 1 16x 1 20 sin2x + 3 320 sin4x + 1 240 sin32x 1 5 sinxcos5x + C (19) Z sin4xcos4xdx = Z ?sin2x 2 ?4 dx = 1 16 Z ?1 cos4x 2 ?2 dx = 1 64 Z (1 2cos4x + cos24x)dx = 3 128x sin4x 128 + 1 1024 sin8x + C (20) Z cos4x sin3x dx = 1 2 Z cos3xd 1 sin2x = 1 2 cos3x sin2x 3 2 Z cos2x sinx dx = cos3x 2sin2x 3 2 Z dx sinx + 3 2 Z sinxdx = cos3x 2sin2x 3 2 Z sec2 x 2 tan x 2 dx 2 3 2 cosx = cos3x 2sin2x 3 2 ln ? ? ?tan x 2 ? ? ? 3 2 cosx + C (21) Z dx sin3xcos5x = Z sin2x + cos2x sin3xcos5x dx = Z dx sinxcos5x + Z dx sin3xcos3x = Z sin2x + cos2x sinxcos5x dx + Z sin2x + cos2x sin3xcos3x dx = Z sinx cos5x dx+2 Z dx sinxcos3x+ Z dx sin3xcosx = 1 4 cos4x+2 Z sin2x + cos2x sinxcos3x dx+ Z sin2x + cos2x sin3xcosx dx = 1 4 sec4x + 2 Z sinx cos3x dx + 3 Z dx sinxcosx + Z cosx sin3x dx = 1 4 sec4x + sec2x + 3 Z dtanx tanx 1 2 csc2x = 1 4 sec4x+sec2x+3ln|tanx| 1 2 csc2x+C1= 1 4 tan4x+ 3 2 tan2x 1 2 cot2x+ 3ln|tanx| + C (22) Z tanxtan(x+a)dx = Z tanx tanx + tana 1 tanxtana dx = Z tan2x + tanxtana + 1 1 1 tanxtana dx = Z 1 + tan2x 1 tanxtana dx Z dx = Z dtanx 1 tanxtana x = cotaln|1 tanxtana| x + C1= cotaln ? ? ? ? cosx cos(x + a) ? ? ? ? x + C 115 (23) Z sin5xcosxdx = 1 2 Z (sin6x + sin4x)dx = 1 12 cos6x 1 8 cos4x + C (24) Z sin2x 1 + sin2x dx = Z 1 csc2x + 1 dx = Z ? 1 csc2x 1 + csc2x ? dx = x+ Z dcotx 2 + cot2x = x+ 2 2 arctan ? 2 2 cotx ? + C (25) sin(a b) 6= 0 K Z dx sin(x + a)sin(x + b) = 1 sin(a b) Z sin(x + a) (x + b) sin(x + a)sin(x + b) dx = 1 sin(a b) Z ?cos(x + b) sin(x + b) cos(x + a) sin(x + a) ? dx = 1 sin(a b) ln ? ? ? ? sin(x + b) sin(x + a) ? ? ? ?+ C (26) I = Z xexcosxdx = xexcosx Z ex(cosxxsinx)dx = xexcosx Z excosxdx+ Z xexsinxdx = xexcosx sinx + cosx 2 ex+xexsinx Z ex(sinx+xcosx)dx = xexcosx sinx + cosx 2 ex+xexsinx sinx cosx 2 ex Z xexcosxdx + C1= ex(xcosx + xsinx sinx) I + C1 KI = Z xexcosxdx = ex 2 (xcosx + xsinx sinx) + C (27) -tanx 2 = tKsinx = 2t 1 + t2 ,cosx = 1 t2 1 + t2 , dx = 2dt 1 + t2 u Z dx (2 + cosx)sinx = Z 1 + t2 t(3 + t2) dt = Z ? 1 3t + 2t 3(3 + t2) ? dt = 1 3 ln|t(t2+3)|+C = 1 3 ln ? ? ?tan x 2 ? tan2 x 2 + 3 ? ? ?+ C = 1 6 ln (1 cosx)(2 + cosx)2 (1 + cosx)3 + C (28) Z ln(x + p 1 + x2)2dx = xln(x + p 1 + x2)2 Z x 1 (x + 1 + x2)2 2(x + p 1 + x2) ? 1 + x 1 + x2 ? dx = xln(x + p 1 + x2)2 Z d(1 + x2) 1 + x2= xln(x + p 1 + x2)2 2 p 1 + x2+ C (29) Z sinxcosx sinx + cosx dx = Z sin2 ? x + 4 ? 1 2 2sin?x + 4 ? dx = 2 2 Z sin ? x + 4 ? dx 1 22 Z dx sin ? x + 4 ? = 2 2 cos ? x + 4 ? 1 22 Z d ? tan ?x 2 + 8 ? tan ?x 2 + 8 ?= 1 2(sinx cosx) 2 4 ln ? ? ?tan ?x 2 + 8 ? ? ? + C (30) Z lnx (1 + x2) 3 2 dx = Z lnxd ? x 1 + x2 ? = xlnx 1 + x2 Z dx 1 + x2= xlnx 1 + x2 ln(x + p 1 + x2) + C (31) Z xexsinxdx = xexsinx Z ex(sinx + xcosx)dx = xexsinx Z exsinxdx Z xexcosxdx = xexsinx sinx cosx 2 ex ex 2 (xcosx + xsinx sinx) + C = ex 2 (xsinx xcosx + cosx) + C (32) Z x3arccosx 1 x2dx = x2arccosx p 1 x2+2 Z xarccosx p 1 x2dx Z x2dx = x2 p 1 x2arccosx x3 3 2 3(1 x 2)3 2arccosx 2 3 Z (1 x2)dx = x2 p 1 x2arccosx x3 3 2 3(1 x 2)3 2arccosx 2 3 ? x x3 3 ? + C = 6x + x 3 9 2 + x2 3 p 1 x2arccosx + C (33) Z (x+|x|)2dx = Z (2x2+2x|x|)dx = 2 3x 3+2 Z xsgnxxdx = 2 3x 3+2 3x 3sgnx+C =2 3x 3+2 3x 2|x|+C (34) Z x2excosxdx = x2excosx Z ex(2xcosxx2sinx)dx = x2excosxex(xcosx+xsinxsinx)+ x2exsinx Z ex(2xsinx + x2cosx)dx = x2ex(cosx + sinx) ex(xcosx + xsinx sinx) ex(xsinx xcosx + cosx) Z x2excosxdx + C1= ex(x2cosx + x2sinx 2xsinx + sinx cosx) I + C1 KI = Z x2excosxdx = ex 2 (x2cosx + x2sinx 2xsinx + sinx cosx) + C 116 (35) Z xex (1 + x)2 dx = Z xexd 1 1 + x = xex 1 + x + Z exdx = xex 1 + x + ex+ C = ex x + 1 + C (36) Z xln2 xdx = 2 3 ln2x x 3 2 4 3 Z x 1 2lnxdx = 2 3 ln2x x 3 2 8 9x 3 2lnx + 8 9 Z xdx =2 3 ln2x x 3 2 8 9x 3 2lnx + 16 27x 3 2+ C = 2 27x 3 2(9ln2x 12lnx + 8) + C (37) -t = r b x x aKx = b + at2 1 + t2 ,x a = b a 1 + t2 , dx = 2(b a)t (1 + t2)2 dt u Z dx p(x a)(b x)= 2 Z dt 1 + t2 = 2arctant + C = 2arctan r b x x a + C (38) Z xln 1 + x 1 x dx = x2 2 ln 1 + x 1 x Z x2 1 x2 dx = x2 2 ln 1 + x 1 x Z dx 1 x2 + Z dx = 1 2x 2 ln 1 + x 1 x 1 2 ln 1 + x 1 x + x + C (39) Z xarctanx ln(1 + x2)dx = x2 2 arctanxln(1 + x2) 1 2 Z x2 ? ln(1 + x2) 1 + x2 + 2xarctanx 1 + x2 ? dx = x2 2 arctanxln(1+x2)1 2 Z ln(1+x2)dx+1 2 Z ln(1 + x2) 1 + x2 dx Z xarctanxdx+ Z xarctanx 1 + x2 dx = x2 2 arctanxln(1+x2)x 2 ln(1+x2)+ Z x2 1 + x2 dx+1 2 arctanxln(1+ x2) Z xarctanx 1 + x2 dx + Z xarctanx 1 + x2 dx x2 2 arctanx + 1 2 Z x2 1 + x2 dx = x2 2 arctanxln(1 + x2) x 2 ln(1 + x2) + 3 2x 3 2 arctanx + 1 2 arctanxln(1 + x2) x2 2 arctanx + C = 1 2 arctanxx2ln(1 + x2) + ln(1 + x2) x2 3 x 2 ln(1 + x2) + 3 2x + C (40) Z sinh2xcosh2xdx = 1 4 Z sinh22xdx = 1 8 Z (cosh4x 1)dx = 1 32 sinh4x x 8 + C 117 1 1Vg |O (1) Z l 0 f(x)dxf(x) = ax + b,a,b (2) Z 2 1 x2dx (3) Z 1 0 axdx ) (1) f(x)30,lY73m0,lnKzfmxi= l n izfmxi1,xim:=i= i nl(i = 1,2, ,n). n X i=1 f(i)xi= n X i=1 (ai+ b)xi= n X i=1 ? ia n l + b ? l n = n X i=1 (nb + ia) l n2 = bl + n + 1 2n al2 u Z l 0 f(x)dx =lim |x|=1 n0 n X i=1 (ai+ b)xi= lim n ? bl + n + 1 2n al2 ? = bl + a 2 l2 (2) x231,2Y73m1,2nKzfmxi= 3 nizfmxi1,xim:=i = 1 + 3i n = 3i n n (i = 1,2, ,n). n X i=1 f(i)xi= n X i=1 2 ixi= n X i=1 ? 3i n n ?2 3 n = n X i=1 3 n3 (9i2 6ni+ n2) = 9 2 ? 1 + 1 n ? 2 + 1 n ? 9 ? 1 + 1 n ? + 3 u Z 2 1 x2dx =lim |x|=1 n0 n X i=1 2 ixi= lim n ? 9 2 ? 1 + 1 n ? 2 + 1 n ? 9 ? 1 + 1 n ? + 3 ? = 3 (3) ax30,1Y73m0,1nKzfmxi= 1 n izfmxi1,xim:=i= i n(i = 1,2, ,n). n X i=1 f(i)xi= n X i=1 aixi= n X i=1 1 na i n= a 1 n(1 a) n(1 a 1 n) ,a 6= 1 1,a = 1 u Z 1 0 axdx =lim |x|=1 n0 n X i=1 aixi= lim n a 1 n(1 a) n(1 a 1 n) = a 1 lna ,a 6= 1 1,a = 1 118 23 1. ?e5 (1) f(x)32,2k.Y: 1 n(n = 1,2,3,) (2) f(x) = sgn ? sin x ? 30,1. ) (1) f(x)32,2. f(x)32,2k.M 0|f(x)| 6 M,x 2,2l ?(f) 6 2M. 0g,NvN = ? 2M ? +1u3 ? 1 N ,2 ? f(x)kkY: f(x)3 ? 1 N ,2 ? . 3 ? 0, 1 N ? mxi1i?mxi?i(f) 6 (f) 6 2MK n X i=1 i(f)xi6 2M n X i=1 xi6 2M N 0A,B?:x 0,x00|x0 x 00| 0. yf(x) 0 “K73x0 a,bf(x0) 0 dY?530 f(x0) 2 0uk Z b a f(x)dx Z x0+ x0 f(x)dx Z x0+ x0 f(x0) 2 dx = f(x0) 0. 4. eK? (1) Z 1 0 xdx, Z 1 0 x2dx (2) Z 2 0 xdx, Z 2 0 sinxdx (3) Z 1 2 ? 1 3 ?x dx, Z 1 0 3xdx ) (1) x (0,1)x x2K Z 1 0 xdx Z 1 0 x2dx (2) x ? 0, 2 ? x sinxK Z 2 0 xdx Z 2 0 sinxdx (3) Z 1 2 ? 1 3 ?x dx = Z 1 0 ? 1 3 ?x2 dx = Z 1 0 32xdx ?x (0,1)2 x x32x 3x l Z 1 2 ? 1 3 ?x dx Z 1 0 3xdx 5. f(x)3a,bY Z b a f2(x)dx = 0yf(x)3a,b“. yy.bf(x)3a,b“Kf2(x) 0 “. 121 qf(x)3a,bYf2(x)3a,bY K13K Z b a f2(x)dx 0 Z b a f2(x)dx = 0g. ubl f(x)3a,b“. 6. f2(x)3a,b?f(x)3a,b. )f(x) = ? 1,?xkn 1,?xn f2(x) = 1 Kf2(x)3a,bYl f2(x)3a,b qd1Kf(x)3a,b. 7. f(x),g(x)3a,bYylim max(xi)0 n X i=1 f(i)g(i)xi= Z b a f(x)g(x)dxxi16 i6 xi,xi16 i6 xi(i = 1,2, ,n),xi= xi xi1(x0= a,xn= b). yf(x),g(x)3a,bYKf(x)g(x)3a,bYf(x)g(x)3a,b=lim max(xi)0 n X i=1 f(i)g(i)xi= Z b a f(x)g(x)dx lim max(xi)0 n X i=1 f(i)g(i)xi=lim max(xi)0 n X i=1 f(i)g(i)xi+ lim max(xi)0 “ n X i=1 f(i)g(i)xi n X i=1 f(i)g(i)xi # q ? ? ? ? ? n X i=1 f(i)g(i)xi n X i=1 f(i)g(i)xi ? ? ? ? ? = ? ? ? ? ? n X i=1 f(i)(g(i) g(i)xi ? ? ? ? ? 6 n X i=1 |f(i)|g(i) g(i)|xi6 n X i=1 M(f)i(g)xi= M(f) n X i=1 i(g)xiM(f)L|f|3a,b.i(g)Lg3xi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025甘肃金昌市人力资源和社会保障局招聘公益性岗位人员1人考前自测高频考点模拟试题及答案详解(有一套)
- 班组安全管理专题培训课件
- 2025吉林白城师范学院招聘高层次人才57人(1号)考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025年双鸭山饶河县公开竞聘农场社区工作者80人考前自测高频考点模拟试题带答案详解
- 2025甘肃张掖市幼儿园选调卫生保健人员1人模拟试卷及答案详解(必刷)
- 远程医疗床服务优化策略-第1篇-洞察与解读
- 2025金华兰溪市尚轩殡仪服务有限公司招聘5人考前自测高频考点模拟试题及完整答案详解1套
- 2025年安庆医药高等专科学校招聘高层次人才5人模拟试卷及答案详解(名师系列)
- 2025安徽合肥长虹美菱生活电器有限公司招聘技术支持岗位模拟试卷及参考答案详解
- 2025海南保亭黎族苗族自治县市场监督管理局公益性岗位人员招聘1人考前自测高频考点模拟试题及1套参考答案详解
- 2024年新高考Ⅰ卷英语真题(原卷+答案)
- 2025山东东营公安招录辅警392人考试参考试题及答案解析
- 2025四川宜宾市退役军人事务局招聘临聘人员2人考试参考题库及答案解析
- 高考语文 热点04 现代文阅读II之理论与文本互证类题(解析版)
- 预制混凝土检查井采购合同模板
- 外贸会计自学课件
- 2025年中小学《国庆节、中秋节》放假通知及安全提示
- 致敬 9.3:一场阅兵一部民族精神史诗
- (完整版)室外散水专项方案
- 智能物流行业智能化运输装备应用前景研究报告
- 2025云南黄金矿业集团股份有限公司第二次招聘8人笔试备考试题及答案解析
评论
0/150
提交评论