材料复习题.doc_第1页
材料复习题.doc_第2页
材料复习题.doc_第3页
材料复习题.doc_第4页
材料复习题.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(P)或屈服强度(S)增加;反向加载时弹性极限(P)或屈服强度(S)降低的现象缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。应力状态软化系数:为了表示应力状态对材料塑性变形的影响,引入了应力状态柔度系数a,它的定义为:应力状态柔度系数a,表征应力状态的软硬。表示材料塑性变形的难易程度。冲击韧度:材料在冲击载荷作用下吸收塑性变形功和断裂功的大小,也即冲击吸收功Ak。低温脆性:在试验温度低于某一温度tk时,会由韧性状态转变未脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状,这就是低温脆性。 应力强度因子K1是描写裂纹尖端应力场强弱程度的复合力学参量,可将它看作推动裂纹扩展的动力。对于受载的裂纹体,当K1增大到某一临界值时,裂纹尖端足够大的范围内应力达到了材料的断裂强度,裂纹便失稳扩展而导致断裂。这一临界值便称为断裂韧度Kc或K1c。金属的疲劳:金属在变动应力和应变长期作用下,由于积累损伤而引起的断裂现象 (即使所受的应力低于屈服强度,也会发生断裂)。疲劳条带:在疲劳断口的显微形貌上,呈现弯曲并相互平行的沟槽花样,称为疲劳条带。疲劳寿命:在疲劳(断裂)过程中,由疲劳裂纹萌生期和裂纹亚稳定扩展期的时间段(或循环周次)组成时间段(或循环周次)即是疲劳寿命。应力腐蚀:金属在拉应力和化学介质的共同作用下引起的脆性断裂叫应力腐蚀。氢蚀:氢与金属中的第二相作用生成高压气体,使机体金属晶界结合力减小而最终断裂的现象。白点:在熔炼时,若钢中含有过量的氢,且未能扩散逸出,这在冷却时聚集到缺陷处,形成氢气。在该处内压力很大,足以将金属局部撕裂,形成微裂纹。这种微裂纹的断面呈银白色圆或椭圆,故称为白点。氢化物致脆:第四、五副族金属易与氢形成脆性氢化物,使金属脆化的现象。氢致延滞断裂:高强度钢中固溶一定量的氢,在低于屈服强度的应力持续作用下,经过一段孕育期后,金属内部形成裂纹,发生断裂。磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。接触疲劳:两接触面做滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片金属剥落而使材料损失的现象。6001X10-5=60MPa表示温度为600,稳定蠕变速率为1X10-5%/h的蠕变极限为60MPa。5001/105=100MPa,表示材料在500,105h后总的生产率位1%的蠕变极限为100MPa。二填空2、对于材料的静拉伸实验,在整个拉伸过程中的变形分为弹性变形、塑性变形和_断裂_三个阶段,塑性变形又可分为_屈服_、均匀塑性变形和_不均匀集中塑性变形_三个阶段。4、根据外加应力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有_张开型(型) 裂纹扩展_、滑开型(型)裂纹扩展和_撕开型(型)裂纹扩展_三类。断裂韧度,它反映了材料抵抗裂纹失稳扩展即抵抗脆断的能力金属机件或构件在变动载荷和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。典型的疲劳断口按照断裂过程可分为三个区域,疲劳源、疲劳区和瞬断区疲劳应力和疲劳寿命之间的关系曲线统称疲劳曲线(SN曲线),分两种:有水平线段的疲劳曲线和无水平线段的疲劳曲线。 对于对称应力循环:r = -1,则疲劳极限用-1 表示金属材料抵抗疲劳过载损伤的能力,用过载损伤界或过载损伤区表示疲劳裂纹不扩展的k临界值,称为疲劳裂纹扩展门槛值常用标准试样的冲击吸收功Ak表示体心立方金属及合金、某些密排六方金属及合金,尤其是工程上常用的中、低强度结构钢,当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这即低温脆性,转变温度tk称为韧脆转变温度,亦称冷脆转变温度。判断题杂质元素S、P、As、Sn、Sb等使钢的韧性下降普通中、低强度钢的基体是体心立方点阵的铁素体,都有明显的低温脆性。正火组织因碳化物为片状,其疲劳强度最低;淬火回火组织因碳化物为粒状,其疲劳强度比正火高。KISCC在特定的化学介质中不发生应力腐蚀断裂的最大应力场强度因子,称为应力腐蚀临界应力场强度因子(或称应力腐蚀门槛值)。根据金属和合金的种类及介质不同,SCC可以是沿晶的或穿晶的,碳钢和铬不锈钢多为沿晶奥氏体不锈钢多为穿晶铝、钛、镍也多为沿晶但也有例外的。(2)裂纹扩展的宏观方向与应力有关,大体垂直于主应力,但裂纹常有分叉现象,呈枯树枝状。 应力腐蚀断裂断口宏观特征 (1)即使是塑韧性非常好的材料,其应力腐蚀断裂的宏观形貌也是完全脆性的。 (2)断口往往是粗糙的。 (3)在亚稳扩展区可见腐蚀产物带来的颜色变化(黑色或灰黑色)。(4)由于断裂总是从与介质接触的表面开始,故启裂区表面附近的断口颜色最深,有时由于腐蚀进展的变化会在断口上留下海滩花样。(5)与介质接触表面往往有点蚀或蚀斑。(6)应注意,有腐蚀产物不是判定应力腐蚀的充分条件。因为也有可能由于别的机制导致断裂后,断口受到随后的腐蚀。应力腐蚀断口微观特征(1)若腐蚀产物不是很厚或被清洗掉后,在适当(如数百倍)倍率下,沿晶断口的形貌是颗粒状。(2)穿晶型的应力腐蚀断口有羽毛状花样或明显的类似解理形貌。(3)在腐蚀产物很厚的情况下,断口形貌可能被掩盖。(4)腐蚀产物的形貌同金属基体形貌不同,常见的是“泥状花样”的腐蚀产物。(5)清洗过的SCC断口能看出被腐蚀的迹象,尤其是沿晶型,更易辨认,这是同单纯氢脆及其它沿晶断口相区别的重要依据。 细化晶粒可使材料韧性增加疲劳过程包括:疲劳裂纹萌生、裂纹亚稳扩展及最后失稳扩展三个阶段。疲劳裂纹扩展区分两个阶段:第一阶段,疲劳微裂纹形成后沿主滑移系方向以纯剪切方式向内扩展的过程。第二阶段,裂纹沿与正应力相垂直的方向扩展。 试根据下述方程,讨论下述因素对金属材料韧脆转变的影响。(1)材料成分;(2)杂质;(3)温度;(4)晶粒大小;(5)应力状态;(6)加载速率。材料成分:gs有效表面能,主要是塑性变形功,与有效滑移系数目和可动位错有关,具有fcc结构的金属有效滑移系和可动位错的数目都比较多,易于塑性变形,不易脆断。凡加入合金元素引起滑移系减少,孪生、位错钉扎的都增加脆性;若合金中形成粗大第二相也是脆性增加。杂质聚集在晶界上的杂质会降低材料的塑性,发生脆断。温度i位错运动摩擦阻力。其值高,材料易于脆断。bcc金属具有低温脆断现象,因为i随着温度的减低而急剧增加,同时在低温下,塑性变形孪生为主,也易于产生裂纹。故低温脆性大。晶粒大小d值小位错塞积的数目少,而且晶界多。故裂纹不易产生,也不易扩展。所以细晶组织有抗脆断性能。应力状态:减少切应力与正应力比值的应力状态都将增加金属的脆性。加载速度:加载速度大,金属会发生韧脆转变。10.韧性断裂与脆性断裂的区别。为什么脆性断裂更加危险?韧性断裂:是断裂前产生明显宏观塑性变形的断裂特征:断裂面一般平行于最大切应力与主应力成45度角。断口成纤维状(塑变中微裂纹扩展和连接),灰暗色(反光能力弱)。断口三要素:纤维区、放射区、剪切唇这三个区域的比例关系与材料韧断性能有关。塑性好,放射线粗大塑性差,放射线变细乃至消失。脆性断裂:断裂前基本不发生塑性变形的,突发的断裂。特征:断裂面与正应力垂直,断口平齐而光滑,呈放射状或结晶状。注意:脆性断裂也产生微量塑性变形。断面收缩率小于5为脆性断裂,大于5为韧性断裂。什么是低温脆性、韧脆转变温度tk?产生低温脆性的原因是什么?体心立方和面心立方金属的低温脆性有和差异?为什么?答:在试验温度低于某一温度tk时,会由韧性状态转变未脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状,这就是低温脆性。 tk称为韧脆转变温度。低温脆性的原因:低温脆性是材料屈服强度随温度降低而急剧增加,而解理断裂强度随温度变化很小的结果。如图所示:当温度高于韧脆转变温度时,断裂强度大于屈服强度,材料先屈服再断裂(表现为塑韧性);当温度低于韧脆转变温度时,断裂强度小于屈服强度,材料无屈服直接断裂(表现为脆性)。心立方和面心立方金属低温脆性的差异:体心立方金属的低温脆性比面心立方金属的低温脆性显著。原因:这是因为派拉力对其屈服强度的影响占有很大比重,而派拉力是短程力,对温度很敏感,温度降低时,派拉力大幅增加,则其强度急剧增加而变脆。-1:疲劳强度。对称循环应力作用下的弯曲疲劳极限(强度)。(是在循环应力周次增加到一定临界值后,材料应力基本不再降低时的应力值;或是应力循环107周次材料不断裂所对应的应力值。)-1p:对称拉压疲劳极限。-1:对称扭转疲劳极限。-1N;缺口试样在对称应力循环作用下的疲劳极限。13.试述金属的硬化与软化现象及产生条件。金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。金属材料在恒定应变范围循环作用下,随循环周次增加其应力逐渐减小,即为循环软化。金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。循环硬化和软化与b / s有关:b / s1.4,表现为循环硬化;b / s1.2,表现为循环软化;1.2b / s1.4,材料比较稳定,无明显循环硬化和软化现象。也可用应变硬化指数n来判断循环应变对材料的影响,n1硬化。退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。循环硬化和软化与位错的运动有关:退火软金属中,位错产生交互作用,运动阻力增大而硬化。冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。9.试述疲劳微观断口的特征及其形成过程。微观形貌有疲劳条带。滑移系多的面心立方金属,其疲劳条带明显滑移系少或组织复杂的金属,其疲劳条带短窄而紊乱。疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合。图(b),裂纹张开,在裂纹尖端沿最大切应力方向产生滑移。图(c),裂纹张开至最大,塑性变形区扩大,裂纹尖端张开呈半圆形,裂纹停止扩展。由于塑性变形裂纹尖端的应力集中减小,裂纹停止扩展的过程称为“塑性钝化”。图(d),当应力变为压缩应力时,滑移方向也改变了,裂纹尖端被压弯成“耳状”切口。图(e),到压缩应力为最大值时,裂纹完全闭合,裂纹尖端又由钝便锐。6.何谓氢致延滞断裂?为什么高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现?答:高强度钢中固溶一定量的氢,在低于屈服强度的应力持续作用下,经过一段孕育期后,金属内部形成裂纹,发生断裂。-氢致延滞断裂。因为氢致延滞断裂的机理主要是氢固溶于金属晶格中,产生晶格膨胀畸变,与刃位错交互作用,氢易迁移到位错拉应力处,形成氢气团。当应变速率较低而温度较高时,氢气团能跟得上位错运动,但滞后位错一定距离。因此,气团对位错起“钉扎”作用,产生局部硬化。当位错运动受阻,产生位错塞积,氢气团易于在塞积处聚集,产生应力集中,导致微裂纹。若应变速率过高以及温度低的情况下,氢气团不能跟上位错运动,便不能产生“钉扎”作用,也不可能在位错塞积处聚集,产生应力集中,导致微裂纹。所以氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现的。kth和-1的异同:共同点:均表示无限寿命的疲劳性能; 受材料成分和组织、载荷条件以及环境影响相异点:-1是光滑试样无限寿命疲劳强度,适用于传统的疲劳强度设计和校核。kth是裂纹试样的无限寿命疲劳性能,适用于裂纹件的设计和疲劳强度校核。应力腐蚀产生条件(1)应力:机件所承受的应力包括工作应力和残余应力。在化学介质诱导开裂过程起作用的是拉应力,且产生应力腐蚀的应力不一定很大。(2)化学介质:只有在特定的化学介质中,某种金属材料才能产生应力腐蚀。(3)金属材料:一般纯金属不会产生应力腐蚀,所有合金对应力腐蚀均有不同程度的敏感性。在每一种合金系列中,都有对应力腐蚀不敏感的合金成分(如镁铝合金)。改善粘着磨损耐磨性的措施1.选择合适的摩擦副配对材料选择原则:配对材料的粘着倾向小互溶性小表面易形成化合物的材料金属与非金属配对2.采用表面化学热处理改变材料表面状态进行渗硫、磷化、碳氮共渗等在表面形成一层化合物或非金属层,即避免摩擦副直接接触又减小摩擦因素。3.控制摩擦滑动速度和接触压力减小滑动速度和接触压力能有效降低粘着磨损。4.其他途径改善润滑条件,降低表面粗糙度,提高氧化膜与机体结合力都能降低粘着磨损。KIC和KI的关系KI应力场强度因子,是个力学参量,与裂纹及 物体的大小、形状、载荷等参数有关。KIC力学性能指标,反映材料本身的特性,只和材料成分、组织结构、热处理及加工工艺有关。二、 外界因素对断裂韧度的影响1、 温度 一般大多数结构钢的断裂韧度随温度降低而下降,但随材料强度增加,KI

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论