




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北航数值分析计算实习题目三SY1004114 全昌彪一、算法设计方案1、解非线性方程组首先将x,y当作已知的常数,求解四个未知数t,u,w,u。利用Newton法(简单迭代法不收敛)求解非线性方程组,得到与x,y对应的向量t,u。求解步骤:1)、选取初始向量t,u,v,w=1,1,1,1;2)、计算和;3)、解关于的线性方程组(调用Doolittle分解法求解此线性方程组);4)、若,则取;否则转5;5)、计算;题目中Newton法迭代公式为:其中2、分片二次代数插值解题思路:由1得到的x,y和t,u的映射表,f(t(x,y),u(x,y),即求得f(x,y)。但由于得到的t,u不可能正好是题目提供的二维数表中的值,需要用相关规则对插值节点加以规范。利用(x,y)以及对应的f(x,y),就可能通过二元拉格朗日插值多项式得到f(x,y)的表达式。插值节点:1)、根据计算得到的t、u值,选取插值节点;选择标准如下:假设对(t,u),这里用(x,y)代替:设: a)、若满足: 则应选择 为插值节点 b)、若满足:或,则取或;或,则取或;2)、双元二次插值子程序相应的插值多项式为:其中3、最小二乘法曲面拟合设在三维直角坐标系中给定(m+1)*(n+1)个点(即三维坐标)在本题中即为。选定M+1个x的函数以及N+1个y的函数。本题中,于是得到乘积型基函数构成的曲面,随着k值的不断增大,精度会越来越大,题目要求精度为,此时的k即为要求的最小值。解题思路:1)、求解矩阵A固定,以为基函数对数据作最小二乘拟合,得到n+1条拟合曲线其中是法方程的解,而,求解n+1线性方程组,得到矩阵A。2)、求解矩阵G3)、系数矩阵C4、子程序说明子程序名称功能subroutine f_fit(t1,t2,c,sigma)最小二乘法曲面拟合子程序,可给出拟合精度sigmasubroutine f_pxy(c,t1,t2,x,y,p_xy)以x,y的幂函数为基,得到拟合系数矩阵Csubroutine f_zxy(z)分片插值子函数,利用已知的(x,y),得到z(x,y)subroutine f_zut(u,t,p)分片插值子函数,利用求取的(u,t),得到z(u,t)subroutine DLU(a,b,x)Doolittle分解求线性方程组子函数subroutine f_newton_iteration(x,y,u,t)Newton迭代法解非线性方程组子程序5、主程序main功能说明主程序对xi,yi赋值,通过调用子程序对非线性方程组求解,得到相应的数据(t,u,v,w),通过调用插值子程序,得到对应的z=f(x,y),并以文件的形式进行输出。通过调用拟合子程序对拟合系数矩阵及拟合精度的求解,结果以文件形式输出。二、fortran源程序!/曲面拟合子函数,并给出拟合精度/subroutine f_fit(t1,t2,c,sigma)use imslimplicit noneinteger i,j,t1,t2parameter n1=11parameter n2=21dimension b(n1,t1),b_trans(t1,n1),b_trans_b(t1,t1),b_inverse(t1,t1)dimension g(n2,t2),g_trans(t2,n2),g_trans_g(t2,t2),g_inverse(t2,t2)double precision b,g,b_trans,g_trans,b_trans_b,g_trans_g,b_inverse,g_inversedimension temp_1(t1,n1),temp_2(t1,n2),temp_3(t1,t2),&c(t1,t2),u(n1,n2),p_xy(n1,n2),x(n1),y(n2)double precision temp_1,temp_2,temp_3,c,u,p_xy,sigma, x,y!/初始化x,y/do i=1,n1 x(i)=0.08*(i-1)end do do j=1,n2 y(j)=0.5+0.05*(j-1)end do!/据题意,求出矩阵b,g/do i=1,n1 do j=1,t1 b(i,j)=x(i)*(j-1) end doend dodo i=1,n2 do j=1,t2 g(i,j)=y(i)*(j-1) end doend do!/确定b,g的转置b_trans和g_trans/do i=1,n1 do j=1,t1 b_trans(j,i)=b(i,j) end doend dodo i=1,n2 do j=1,t2 g_trans(j,i)=g(i,j) end doend do!/求解b_trans_b和g_trans_g的逆矩阵b_inverse和g_inverse/b_trans_b=matmul(b_trans,b)!matmul为矩阵相乘函数,库函数g_trans_g=matmul(g_trans,g)b_inverse=.i.b_trans_bg_inverse=.i.g_trans_g !/求解c矩阵/call f_zxy(u)temp_1=matmul(b_inverse,b_trans)temp_2=matmul(temp_1,u)temp_3=matmul(temp_2,g)c=matmul(temp_3,g_inverse)!/求拟合精度误差/sigma=0do i=1,n1 do j=1,n2 call f_pxy(c,t1,t2,x(i),y(j),p_xy(i,j) sigma=sigma+(u(i,j)-p_xy(i,j)*2 end doend dowrite (*,*) sigmaend subroutine f_fit!/子函数f_pxy给定拟合曲面的近似表达式/subroutine f_pxy(c,t1,t2,x,y,p_xy)implicit noneinteger t1,t2dimension c(t1,t2)double precision p_xy,temp_4,x,y,cinteger i,j,ktemp_4=0.0d0do i=1,t1 do j=1,t2 temp_4=temp_4+c(i,j)*(x*(i-1)*(y*(j-1) end doend dop_xy=temp_4 !拟合曲面end subroutine f_pxy!/分片插值子函数,得出z=z(x,y)/subroutine f_zxy(z)dimension x(11),y(21),u(11,21),t(11,21),z(11,21)double precision x,y,u,t,zinteger i,jdo i=1,11 do j=1,21 x(i)=0.08*(i-1) y(j)=0.5+0.05*(j-1)!调用牛顿迭代法求非线性方程子函数 call f_newton_iteration(x(i),y(j),u(i,j),t(i,j) call f_zut(u(i,j),t(i,j),z(i,j) end doend doend subroutine f_zxy!/ Doolittle分解子函数求解线性方程组/subroutine DLU(a,b,x)integer,parameter : kkk=4real(kind=8) mreal(kind=8),dimension(kkk,kkk),intent(in): areal(kind=8),dimension(kkk,kkk):l=0,u=0real(kind=8),dimension(kkk): yreal(kind=8),dimension(kkk),intent(out):xreal(kind=8),dimension(kkk),intent(in):binteger i,j,kdo k=1,kkk,1 do j=k,kkk,1 m=0 do t=1,k-1,1 m=l(k,t)*u(t,j)+m end do u(k,j)=a(k,j)-m end do do i=k+1,kkk,1 m=0 do t=1,k-1,1 m=m+l(i,t)*u(t,k) end do l(i,k)=(a(i,k)-m)/u(k,k) end do l(k,k)=1end do!/解方程/y(1)=b(1)do i=1,kkk,1 m=0 do t=1,i-1,1 m=m+l(i,t)*y(t) end do y(i)=b(i)-mend dox(kkk)=y(kkk)/u(kkk,kkk)do i=kkk-1,1,-1 m=0 do t=i+1,kkk,1 m=m+u(i,t)*x(t) end do x(i)=(y(i)-m)/u(i,i)end doend subroutine DLU!/牛顿迭代法子程序/subroutine f_newton_iteration(x,y,u,t)parameter n=4dimension f(n),aa(n,n),f_delta(n)double precision f,aa,f_deltadouble precision t,u,v,w,x,ydouble precision epsion,s1,s2integer i,j!迭代初始值t=1.0u=1.0v=1.0w=1.0epsion=1.0do while(epsion.ge.1e-12)f(1)=-(0.5*cos(t)+u+v+w-x-2.67)f(2)=-(t+0.5*sin(u)+v+w-y-1.07)f(3)=-(0.5*t+u+cos(v)+w-x-3.74)f(4)=-(t+0.5*u+v+sin(w)-y-0.79)aa(1,1)=-0.5*sin(t)aa(1,2)=1aa(1,3)=1aa(1,4)=1aa(2,1)=1aa(2,2)=0.5*cos(u)aa(2,3)=1aa(2,4)=1aa(3,1)=0.5aa(3,2)=1aa(3,3)=-sin(v)aa(3,4)=1aa(4,1)=1aa(4,2)=0.5aa(4,3)=1aa(4,4)=cos(w)call DLU(aa,f,f_delta)s1=f_delta(1)*f_delta(1)+f_delta(2)*f_delta(2)+f_delta(3)*f_delta(3)+f_delta(4)*f_delta(4)s1=sqrt(s1)s2=t*t+u*u+v*v+w*ws2=sqrt(s2)epsion=s1/s2t=t+f_delta(1)u=u+f_delta(2)v=v+f_delta(3)w=w+f_delta(4)end doend subroutine f_newton_iteration!/分片插值子函数,得出z=z(u,t)/subroutine f_zut(u,t,p)implicit noneparameter n=6dimension x(n),y(n)double precision x,y,h,h1double precision u,tinteger i,j,ii,jj !ii,jj 插值节点integer k,r,ti dimension lx(n),ly(n),z(n,n) double precision p,lx,ly,z !p,lx,ly,z 插值多项式中的项x(1)=0y(1)=0h=0.4h1=0.2do i=2,nx(i)=x(1)+(i-1)*hy(i)=y(1)+(i-1)*h1end doii=0jj=0p=0!/给定z(n,n)/z(:,1)=(/-0.5,-0.34,0.14,0.94,2.06,3.5/)z(:,2)=(/-0.42,-0.5,-0.26,0.3,1.18,2.38/)z(:,3)=(/-0.18,-0.5,-0.5,-0.18,0.46,1.42/)z(:,4)=(/0.22,-0.34,-0.58,-0.5,-0.1,0.62/)z(:,5)=(/0.78,-0.02,-0.5,-0.66,-0.5,-0.02/)z(:,6)=(/1.5,0.46,-0.26,-0.66,-0.74,-0.5/)do i=3,n-2 if (u.gt.(x(i)-h/2).and.(u.le.(x(i)+h/2) then ii=i goto 10 else if (u.le.(x(3)-h/2) then ii=2 else ii=n-1 end ifend do10 do j=3,n-2 if (t.gt.(y(j)-h1/2).and.(t.le.(y(j)+h1/2) then jj=j goto 20 else if (t.le.(y(3)-h1/2) then jj=2 else jj=n-1 end if end do20 do k=ii-1,ii+1 do r=jj-1,jj+1 lx(k)=1 ly(r)=1 do ti=ii-1,ii+1 if (ti.ne.k) then lx(k)=lx(k)*(u-x(ti)/(x(k)-x(ti) end if end do do ti=jj-1,jj+1 if (ti.ne.r) then ly(r)=ly(r)*(t-y(ti)/(y(r)-y(ti) end if end do p=p+lx(k)*ly(r)*z(k,r) end do end doend subroutine f_zut!/主函数main/program main implicit nonedouble precision vector_x(0:10),vector_y(0:20)double precision xx(0:7),yy(0:4)double precision tu(0:230,0:1),ut(0:1),zt(0:230),c(0:10,0:10),tu2(45,0:1),zt2(0:39),tt(45)double precision z,sigmainteger i,j,m,n,l,t2,n2n=10m=20do i=0,10 vector_x(i)=0.08*iend dodo j=0,20 vector_y(j)=0.5+0.05*jend doopen(11,file=xytuz.txt)write(11,100)x,y,t,u,zdo i=0,10 do j=0,20 call f_newton_iteration(vector_x(i),vector_y(j),&tu(i*21+j,1),tu(i*21+j,0) call f_zut(tu(i*21+j,1),tu(i*21+j,0),zt(i*21+j) write(11,200) vector_x(i),vector_y(j),&tu(i*21+j,1),tu(i*21+j,0),zt(i*21+j) end doend doclose(11)open(22,file=f(x,y).txt)write(22,400)xi,yi,f(xi,yi)do i=0,n do j=0,m write(22,300) vector_x(i),vector_y(j),zt(i*21+j) end doend doclose(22)do l=1,6 call f_fit(l,l,c,sigma)end doopen(33,file=matrix_c.txt) do i=0,5 write(33,(20e20.12)(c(i,j),j=0,5) end doclose(33)t2=8n2=5do i=1,t2 xx(i-1)=0.1*iend dodo j=1,n2 yy(j-1)=0.5+0.2*jend dodo i=1,t2 do j=1,n2 call f_newton_iteration(xx(i-1),yy(j-1),tu2(i-1)*5+j,1), tu2(i-1)*5+j,0) end doend dodo i=1,40 call f_zut(tu2(i,1),tu2(i,0),zt2(i-1)end dodo i=1,t2 do j=1,n2 call f_pxy(c,6,6,xx(i-1),yy(j-1),tt(i-1)*5+j) end doend doopen(44,file=f2(x,y).txt)write(44,600)x*i,y*i,f(xi,yi),p(xi,yi)do i=1,t2 do j=1,n2 write(44,500) xx(i-1),yy(j-1),zt2(i-1)*5+j-1),tt(i-1)*5+j) end doend doclose(44)! /输出格式控制/100 format(2a10,3a15)200 format(2e12.4,3e20.12)300 format(2e12.4,e20.12)400 format(2a10,a18)500 format(2e20.7,2e20.12)600 format(2a18,2a18)end program main 三、结果汇总1、数表:xi,yi、f(xi,yi) xi yi f(xi,yi)0.0000E+00 0.5000E+00 0.446504069241E+00 0.0000E+00 0.5500E+00 0.324683310597E+00 0.0000E+00 0.6000E+00 0.210159730631E+00 0.0000E+00 0.6500E+00 0.103043643055E+00 0.0000E+00 0.7000E+00 0.340192524000E-02 0.0000E+00 0.7500E+00 -0.887357886680E-01 0.0000E+00 0.8000E+00 -0.173371611924E+00 0.0000E+00 0.8500E+00 -0.250534594048E+00 0.0000E+00 0.9000E+00 -0.320276491493E+00 0.0000E+00 0.9500E+00 -0.382668052743E+00 0.0000E+00 0.1000E+01 -0.437795745638E+00 0.0000E+00 0.1050E+01 -0.485758921243E+00 0.0000E+00 0.1100E+01 -0.526667236102E+00 0.0000E+00 0.1150E+01 -0.560638463024E+00 0.0000E+00 0.1200E+01 -0.587796524654E+00 0.0000E+00 0.1250E+01 -0.608269768328E+00 0.0000E+00 0.1300E+01 -0.622189446194E+00 0.0000E+00 0.1350E+01 -0.629688384281E+00 0.0000E+00 0.1400E+01 -0.630899769389E+00 0.0000E+00 0.1450E+01 -0.625956164380E+00 0.0000E+00 0.1500E+01 -0.614988550047E+00 0.8000E-01 0.5000E+00 0.638015234587E+00 0.8000E-01 0.5500E+00 0.506611795876E+00 0.8000E-01 0.6000E+00 0.382176408075E+00 0.8000E-01 0.6500E+00 0.264863525560E+00 0.8000E-01 0.7000E+00 0.154780230633E+00 0.8000E-01 0.7500E+00 0.519927097057E-01 0.8000E-01 0.8000E+00 -0.434680179481E-01 0.8000E-01 0.8500E+00 -0.131601038093E+00 0.8000E-01 0.9000E+00 -0.212431072587E+00 0.8000E-01 0.9500E+00 -0.286004537561E+00 0.8000E-01 0.1000E+01 -0.352386059629E+00 0.8000E-01 0.1050E+01 -0.411655437858E+00 0.8000E-01 0.1100E+01 -0.463904893928E+00 0.8000E-01 0.1150E+01 -0.509236708669E+00 0.8000E-01 0.1200E+01 -0.547761104059E+00 0.8000E-01 0.1250E+01 -0.579594377202E+00 0.8000E-01 0.1300E+01 -0.604857251213E+00 0.8000E-01 0.1350E+01 -0.623673426166E+00 0.8000E-01 0.1400E+01 -0.636168257103E+00 0.8000E-01 0.1450E+01 -0.642467668455E+00 0.8000E-01 0.1500E+01 -0.642697116743E+00 0.1600E+00 0.5000E+00 0.840081396883E+00 0.1600E+00 0.5500E+00 0.699764166271E+00 0.1600E+00 0.6000E+00 0.566061444836E+00 0.1600E+00 0.6500E+00 0.439171614444E+00 0.1600E+00 0.7000E+00 0.319242167288E+00 0.1600E+00 0.7500E+00 0.206376218657E+00 0.1600E+00 0.8000E+00 0.100638546919E+00 0.1600E+00 0.8500E+00 0.206075984654E-02 0.1600E+00 0.9000E+00 -0.893540080136E-01 0.1600E+00 0.9500E+00 -0.173626954709E+00 0.1600E+00 0.1000E+01 -0.250799943998E+00 0.1600E+00 0.1050E+01 -0.320932252750E+00 0.1600E+00 0.1100E+01 -0.384097719188E+00 0.1600E+00 0.1150E+01 -0.440382160815E+00 0.1600E+00 0.1200E+01 -0.489881139368E+00 0.1600E+00 0.1250E+01 -0.532697954784E+00 0.1600E+00 0.1300E+01 -0.568941871351E+00 0.1600E+00 0.1350E+01 -0.598726545062E+00 0.1600E+00 0.1400E+01 -0.622168637157E+00 0.1600E+00 0.1450E+01 -0.639386546614E+00 0.1600E+00 0.1500E+01 -0.650499364497E+00 0.2400E+00 0.5000E+00 0.105151509248E+01 0.2400E+00 0.5500E+00 0.902927427685E+00 0.2400E+00 0.6000E+00 0.760580262813E+00 0.2400E+00 0.6500E+00 0.624715195878E+00 0.2400E+00 0.7000E+00 0.495519776775E+00 0.2400E+00 0.7500E+00 0.373134067685E+00 0.2400E+00 0.8000E+00 0.257656776698E+00 0.2400E+00 0.8500E+00 0.149150588766E+00 0.2400E+00 0.9000E+00 0.476470043700E-01 0.2400E+00 0.9500E+00 -0.468493081747E-01 0.2400E+00 0.1000E+01 -0.134356747670E+00 0.2400E+00 0.1050E+01 -0.214913334079E+00 0.2400E+00 0.1100E+01 -0.288573687009E+00 0.2400E+00 0.1150E+01 -0.355406352189E+00 0.2400E+00 0.1200E+01 -0.415491385199E+00 0.2400E+00 0.1250E+01 -0.468918240380E+00 0.2400E+00 0.1300E+01 -0.515783875727E+00 0.2400E+00 0.1350E+01 -0.556191070573E+00 0.2400E+00 0.1400E+01 -0.590246929357E+00 0.2400E+00 0.1450E+01 -0.618061557834E+00 0.2400E+00 0.1500E+01 -0.639746851961E+00 0.3200E+00 0.5000E+00 0.127124675843E+01 0.3200E+00 0.5500E+00 0.111500201761E+01 0.3200E+00 0.6000E+00 0.964607722308E+00 0.3200E+00 0.6500E+00 0.820347363242E+00 0.3200E+00 0.7000E+00 0.682447673529E+00 0.3200E+00 0.7500E+00 0.551085227171E+00 0.3200E+00 0.8000E+00 0.426392408546E+00 0.3200E+00 0.8500E+00 0.308463021403E+00 0.3200E+00 0.9000E+00 0.197357157387E+00 0.3200E+00 0.9500E+00 0.931056491500E-01 0.3200E+00 0.1000E+01 -0.428596469251E-02 0.3200E+00 0.1050E+01 -0.948339139383E-01 0.3200E+00 0.1100E+01 -0.178572979137E+00 0.3200E+00 0.1150E+01 -0.255553768875E+00 0.3200E+00 0.1200E+01 -0.325840141101E+00 0.3200E+00 0.1250E+01 -0.389506980643E+00 0.3200E+00 0.1300E+01 -0.446638198547E+00 0.3200E+00 0.1350E+01 -0.497324947822E+00 0.3200E+00 0.1400E+01 -0.541664031390E+00 0.3200E+00 0.1450E+01 -0.579756487909E+00 0.3200E+00 0.1500E+01 -0.611706299458E+00 0.4000E+00 0.5000E+00 0.149832107231E+01 0.4000E+00 0.5500E+00 0.133499864071E+01 0.4000E+00 0.6000E+00 0.117712512422E+01 0.4000E+00 0.6500E+00 0.102502405047E+01 0.4000E+00 0.7000E+00 0.878960016740E+00 0.4000E+00 0.7500E+00 0.739145103470E+00 0.4000E+00 0.8000E+00 0.605744887693E+00 0.4000E+00 0.8500E+00 0.478883880984E+00 0.4000E+00 0.9000E+00 0.358650648829E+00 0.4000E+00 0.9500E+00 0.245102261159E+00 0.4000E+00 0.1000E+01 0.138268376673E+00 0.4000E+00 0.1050E+01 0.381548905914E-01 0.4000E+00 0.1100E+01 -0.552527979027E-01 0.4000E+00 0.1150E+01 -0.141986870438E+00 0.4000E+00 0.1200E+01 -0.222094430862E+00 0.4000E+00 0.1250E+01 -0.295635227198E+00 0.4000E+00 0.1300E+01 -0.362679507525E+00 0.4000E+00 0.1350E+01 -0.423306161793E+00 0.4000E+00 0.1400E+01 -0.477601035622E+00 0.4000E+00 0.1450E+01 -0.525655428548E+00 0.4000E+00 0.1500E+01 -0.567564753485E+00 0.4800E+00 0.5000E+00 0.173189277935E+01 0.4800E+00 0.5500E+00 0.156203460147E+01 0.4800E+00 0.6000E+00 0.139721693052E+01 0.4800E+00 0.6500E+00 0.123780101007E+01 0.4800E+00 0.7000E+00 0.108408753012E+01 0.4800E+00 0.7500E+00 0.936322767079E+00 0.4800E+00 0.8000E+00 0.794704459103E+00 0.4800E+00 0.8500E+00 0.659387211130E+00 0.4800E+00 0.9000E+00 0.530487603091E+00 0.4800E+00 0.9500E+00 0.408088704433E+00 0.4800E+00 0.1000E+01 0.292244222111E+00 0.4800E+00 0.1050E+01 0.182982228522E+00 0.4800E+00 0.1100E+01 0.803085151786E-01 0.4800E+00 0.1150E+01 -0.157904052160E-01 0.4800E+00 0.1200E+01 -0.105344546036E+00 0.4800E+00 0.1250E+01 -0.188398086861E+00 0.4800E+00 0.1300E+01 -0.265007147050E+00 0.4800E+00 0.1350E+01 -0.335237837830E+00 0.4800E+00 0.1400E+01 -0.399164503807E+00 0.4800E+00 0.1450E+01 -0.456868144112E+00 0.4800E+00 0.1500E+01 -0.508435001840E+00 0.5600E+00 0.5000E+00 0.197122185031E+01 0.5600E+00 0.5500E+00 0.179532964555E+01 0.5600E+00 0.6000E+00 0.162406714373E+01 0.5600E+00 0.6500E+00 0.145783060027E+01 0.5600E+00 0.7000E+00 0.129695465723E+01 0.5600E+00 0.7500E+00 0.114171810591E+01 0.5600E+00 0.8000E+00 0.992349529967E+00 0.5600E+00 0.8500E+00 0.849032670029E+00 0.5600E+00 0.9000E+00 0.711911361038E+00 0.5600E+00 0.9500E+00 0.581094170177E+00 0.5600E+00 0.1000E+01 0.456658526807E+00 0.5600E+00 0.1050E+01 0.338654511410E+00 0.5600E+00 0.1100E+01 0.227108271757E+00 0.5600E+00 0.1150E+01 0.122025104649E+00 0.5600E+00 0.1200E+01 0.233922218851E-01 0.5600E+00 0.1250E+01 -0.688187015106E-01 0.5600E+00 0.1300E+01 -0.154649345159E+00 0.5600E+00 0.1350E+01 -0.234152668459E+00 0.5600E+00 0.1400E+01 -0.307391094659E+00 0.5600E+00 0.1450E+01 -0.374434865587E+00 0.5600E+00 0.1500E+01 -0.435360560081E+00 0.6400E+00 0.5000E+00 0.221566795781E+01 0.6400E+00 0.5500E+00 0.203420120718E+01 0.6400E+00 0.6000E+00 0.185695519841E+01 0.6400E+00 0.6500E+00 0.168435820226E+01 0.6400E+00 0.7000E+00 0.151677637624E+01 0.6400E+00 0.7500E+00 0.135451905345E+01 0.6400E+00 0.8000E+00 0.119784409041E+01 0.6400E+00 0.8500E+00 0.104696305150E+01 0.6400E+00 0.9000E+00 0.902046085546E+00 0.6400E+00 0.9500E+00 0.763226480496E+00 0.6400E+00 0.1000E+01 0.630604826592E+00 0.6400E+00 0.1050E+01 0.504252821144E+00 0.6400E+00 0.1100E+01 0.384216723598E+00 0.6400E+00 0.1150E+01 0.270520485377E+00 0.6400E+00 0.1200E+01 0.163168580672E+00 0.6400E+00 0.1250E+01 0.621485545494E-01 0.6400E+00 0.1300E+01 -0.325666241909E-01 0.6400E+00 0.1350E+01 -0.121016540527E+00 0.6400E+00 0.1400E+01 -0.203251405858E+00 0.6400E+00 0.1450E+01 -0.279330366030E+00 0.6400E+00 0.1500E+01 -0.349319963960E+00 0.7200E+00 0.5000E+00 0.246468435172E+01 0.7200E+00 0.5500E+00 0.227805908576E+01 0.7200E+00 0.6000E+00 0.209525133562E+01 0.7200E+00 0.6500E+00 0.191671819269E+01 0.7200E+00 0.7000E+00 0.174285467524E+01 0.7200E+00 0.7500E+00 0.157399845779E+01 0.7200E+00 0.8000E+00 0.141043485221E+01 0.7200E+00 0.8500E+00 0.125240175695E+01 0.7200E+00 0.9000E+00 0.110009440601E+01 0.7200E+00 0.9500E+00 0.953669846066E+00 0.7200E+00 0.1000E+01 0.813251050248E+00 0.7200E+00 0.1050E+01 0.678930739188E+00 0.7200E+00 0.1100E+01 0.550774846333E+00 0.7200E+00 0.1150E+01 0.428825676240E+00 0.7200E+00 0.1200E+01 0.313104771814E+00 0.7200E+00 0.1250E+01 0.203615505489E+00 0.7200E+00 0.1300E+01 0.100345468840E+00 0.7200E+00 0.1350E+01 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青海部队岗位笔试题及答案
- 中信银行江门市新会区2025秋招面试典型题目及参考答案
- 广发银行梅州市丰顺县2025秋招群面案例总结模板
- 光大银行常州市新北区2025秋招笔试性格测试题专练及答案
- 浦发银行安庆市迎江区2025秋招面试典型题目及参考答案
- 民生银行成都市青白江区2025秋招群面模拟题及高分话术
- 中信银行安庆市桐城市2025秋招无领导小组面试案例库
- 民生银行合肥市包河区2025秋招英文面试题库及高分回答
- 华夏银行银川市西夏区2025秋招结构化面试经典题及参考答案
- 兴业银行温州市瑞安市2025秋招笔试价值观测评题专练及答案
- 公路局应急管理知识培训
- 外宾参观活动方案
- 质量保障方案文案(3篇)
- 1.4理解与感知1812序曲课件-高中音乐湘教版必修音乐鉴赏
- 产科分娩风险管理制度
- 洗车店卫生管理制度
- JG/T 375-2012金属屋面丙烯酸高弹防水涂料
- T/CCOA 62-2023大豆油生产技术规范
- 基础计算机知识常识试题及答案
- 2022年7月23日广东省事业单位高校毕业生招聘考试《基本能力测试》试题真题答案解析
- JT-T 495-2025 公路交通安全设施产品质量检验抽样方法
评论
0/150
提交评论