已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
从一道中考数学试题谈起江苏省泰州市朱庄中学 曹开清 225300这是江苏省泰州市2002年的一道中考数学试题:下面一组按规律排列的数:1,2,4,8,16 ,第2002个数应是 ( )A、B、1C、D、以上答案不对标准答案:由不完全归纳法,第1个数是,第2个数是,第3个数是,第4个数是,第5个数是,所以第2002个数是,选C答案。(本题是考查考生运用不完全归纳法的能力,可把D答案改为如1。)笔者认为选C答案是错误的,应该选D答案。理由如下:不完全归纳法是根据一类事物中的部分对象具有(或不具有)某种属性,从而得出该类事物所有对象都具有(或不具有)某种属性的思维方法。这种归纳法是以一定数量的事实作为基础,进行分析研究,找出规律或提出猜想。但是,由于不完全归纳法是以有限数量的事实(特殊情况)作为基础而得出的一般性结论,这样作出的结论有时是不正确的。例如,本题中我们不妨设数列的通项为(n-1)(n-2)(n-3)(n-4) (n-5),显然,1,2,4,8,16,而第2002个数并不是。 虽然不完全归纳法的结论有时可能不正确,但它仍是一种重要的思维方法。通常是把不完全归纳法与数学归纳法结合起来使用,先用不完全归纳法发现规律或进行猜想,再用数学归纳法证明。正面的例子 例1 一个平面内的n条直线最多能将该平面分为几部分?一个平面内的n个圆最多能将该平面分为几部分? 分析:1)1条直线最多能将一个平面分为21+1部分; 2条直线最多能将一个平面分为41+1+2部分; 3条直线最多能将一个平面分为71+1+2+3部分; 4条直线最多能将平面分为111+1+2+3+4部分; 由不完全归纳法,发现规律: n条直线最多能将平面分为1+1+2+3+4+n1+(1+n)n/2部分。 2)1个圆最多能将平面分为21+1部分; 2个圆最多能将平面分为41+1+2部分; 3个圆最多能将平面分为81+1+2+4部分; 4个圆最多能将平面分为141+1+2+4+6部分; 由不完全归纳法,发现规律: n个圆最多能将平面分为1+1+2+4+6+8+2(n-1)=2+n(n-1)部分。然后用数学归纳法证明。 例2 化简:=1/(2!)+2/(3!)+3/(4!)+ +(n-1)/(n!) (其中n为整数,且n2)。 分析:当n=2时, =1/2 当n=3时, =5/6 当n=4时, =23/24 当n=5时, =119/120 由不完全归纳法,猜想Sn=(n!-1)/n! (n2) ,然后用数学归纳法证明。 例3 一个用不完全归纳法获得真理的故事 英国天文学家、数学家哈雷从小就爱好数学和天文。在中学读书的时候,他运用数学和物理知识独立地测出伦敦磁针的变化为230,在牛津大学学习期间,他不但设计了测定行星轨道单元的新方法,而且还编制出第一个南天星表。因而获得了较高的声誉。年轻的哈雷不久就被选上英国皇家学会的会员。1703年被聘任为牛津大学教授。1720年成为皇家天文学家,并担任格林威治天文台台长。 哈雷是一位理论与实践相结合的科学家,他对大体星球轨道的研究不但进行理论上的探索与精密的计算,而且还坚持实地观察和测量。 哈雷对天文学的最大贡献是对彗星的研究。他从小就对彗星发生了极大的兴趣,他一心一意地进行了人类从未计算过的彗星轨道研究。他在观测1680年的大彗星之后,又对24颗彗星的轨道进行了计算,他注意到1456年、1531年、1607年及1682年彗星运行轨道的相似性。他用不完全归纳法得出了下面一个特性。即 1531年1456年75年; 1607年1531年76年; 1682年1607年75年。这表明,这三次彗星出现的间隔时间几乎相同,于是哈雷猜想,过去天文学家认为这三颗不同的彗星也许是同一颗彗星。就是说,它可能先后三次经过那里。它以76年为周期绕日运转。哈雷从这个数学上的不完全归纳法得到的猜想进一步作理论上的研究,然后并以此为据,推想到这颗彗星下一次出现的时间将为1758或1759年间。 哈雷预言这颗彗星再次出现的时刻终于到来,1759年3月13日,这颗明亮的彗星,拖着长长的尾巴果然出现在天空之中。全世界爱好天文的人们都欢腾起来,说哈雷的数学计算真是神妙,但可惜的是,那时哈雷已经离开人间17年了。大家为了纪念哈雷的预言,称这颗彗星为“哈雷彗星”,哈雷受到全世界人们的尊敬。 人们根据哈雷的彗星计算原理进行推算,这颗哈雷亲眼看到的彗星将经过76年3228年再次出现在地球上空,这就是说,到达1682年228年=1910年时,这颗哈雷彗星必然又将出现在地球上空,天文学家、数学家们经过计算,它与地球的距离已迫近到2400万公里,而它的尾巴长达2亿公里,很明显,这一望无际的长尾巴将会扫过地球而去。当时人们都担心这个尾巴当扫到地球上时将会出现什么,有些胆小的人(包括某些天文学家)都惊怕了,说哈雷彗星必将与地球相撞,地球的末日到来了,有个别人甚至胆小到为避免见到惨剧,事先自杀了。 199年5月18日哈雷彗星果真又出现在地球的上空而且它的尾巴也确实扫过了地球,人们照样还是安然无恙,其实彗星的尾巴只不过是一种极稀薄的气体和尘埃所组成,它的来到可能会有一些氰和一氧化碳分子进入地球大气层,但这与目前工厂和汽车每天排放的有害气体比较,就微不足道了,所以说哈雷彗星的尾巴扫过地球是没有什么影响的,即使是彗星的头,(即彗星核)碰上了地球也不会毁灭地球的,因为这个彗星头的质量也只有地球的一千分之一。 哈雷彗星最近一次到来是1986年,因为1910年76年1986年。(这次哈雷彗星的回归,观察可分为两个时期;1985年11月1日至1986年1月16日,哈雷彗星在太阳之东;1986年2月27日至4月19日,哈雷彗星在太阳之西,在后面一个观察期内彗星容易看到且较为壮观。) 哈雷能预言彗星的到来,这说明事物间是相互联系的,哈雷用数学上的不完全归纳法,在一系列彗星出现的时间表上归纳,猜想出一个新的设想,然后再加以论证,证实这个设想是正确的,于是推翻了前人的结论,得到了一个新的结论,获得了真理。我们学习数学,研究科学,就要在前人的基础上创新,从而推动科学的发展,造福于人类.反面的例子 例1 奈何姓万(古代笑话)汝有田舍翁,家资殷盛,而累世不识“之”、“乎”。一岁,聘楚士训其子。楚士始训之搦管临朱。书一画,训曰:“一字。”书二画,训曰:“二字。”书三画,训曰:“三字。”其子辄,欣欣然,掷笔归告其父,曰:“儿得矣,儿得矣!可无烦先生,重费馆谷也,请谢去。”其父喜,从之。具币谢遣楚士。逾时,其父拟征召姻友万氏者饮,令子晨起治状。久之不成,父趣之,其子恚曰:“天下姓氏夥矣,奈何姓万?自晨起至今,才完五百画也!”选自【明】刘无卿应谐录例2 “公鸡归纳法”有一次,我国数学家华罗庚在给中学生作报告时,讲了一个有趣的故事。一只公鸡被一位买主买回了家,第一天主人喂了公鸡一把米,第二天主人又喂了公鸡一把米,第三天主人也喂了公鸡一把米,连续十天每天都给公鸡喂一把米。公鸡有了十天的经验,它就下结论说:主人一定每天都喂它一把米,直到永远。但是就在它得出这个结论不久,主人家里来了一位客人,公鸡就变成下酒菜了。华罗庚把公鸡这种得出结论的方法称之为“公鸡归纳法”。 例3 哈佛大学的试题 美国哈佛大学招生时,出了这样一道考试题:1=5,2=25,3=125,4=625,5=?结果绝大多数应考者都认为是,即3125而做错。错误的原因在于用“不完全归纳法”得出的结论只是个猜测,不能代表最后结果。注:也有的考生答案是1。例4 比较与的大小(其中n为正整数)错解:当n=1时,;当n=2时,。由不完全归纳法,得出一般结论:当n为任何正整数时,。而事实上,当n为正整数且n3的时,。例5 无论x取任何非负整数,y=x2+x+41都是质数?错解:在y=x2+x+41这个函数式中,当自变量x取0,1,2,3,38,39时,得出y的值为41,43,47,53,1601,这些数都是质数。由此得出无论x取任何非负整数,y=x2+x+41都是质数。而事实上,当x=40时,y=402+40+41=40(40+1)+41=41(40+1)= 。可见,y的值已不是质数,而是合数。 例6 费马数猜想大师的失误 费马数(Fermat number)是指形如1的数(其中n为正整数),一般用表示。1640年,在数论领域留下不可磨灭足迹的法国数学家费马思考了一个问题:式子1的值是否一定为质数。当 n取1、2、3、4时,这个式子对应值分别为: 15; 117; 1257; 165537;费马发现前4个都是质数,第5个数实在太大了,费马也认为是实数。由此,费马提出一个猜想:形如=1的数一定为质数。在给朋友的一封信中,费马写道:“我已经发现形如=1的数永远为质数,很久以前我就向分析学家们指出了这个结论。”费马同时坦然承认,他自己未能找到一个完全的证明。费马所研究的1这种具有美妙形式的数,后人称之为费马数,并用表示。费马当时的猜想相当于说:所有费马数都一定是质数。费马的猜想正确吗?进一步验证费马的猜想并不容易。因为随着n的增大,迅速增大。比如对后人来说第一个需要检验的4294967297已经是一个10位数了。非常可能的是,由于这个数太大了,所以费马在提出自己的猜想时并没有对它进行验证。那么,它到底是否如同费马所相信的那样是一个质数呢?1729年12月,哥德巴赫(哥德巴赫猜想的提出者)在写给欧拉的一封信中问道:“费马认为所有形如1的数都是质数,你知道这个问题吗?他说他没能作出证明。据我所知,也没有其他任何人对这个问题作出过证明。”这个问题吸引了欧拉。1732年,年仅25岁的欧拉在费马死后67年得出6416700417,这一结果意味着是一个合数,因此宣布了费马的这个猜想是错误的,它不能作为一个求质数的公式。以后人们又陆续找到了不少反例,如= + 1= 18446744073709551617 = 27417767280421310721=+1=340282366920938463463374607431768211457=596495891274972175704689200685129054721都不是质数。至今,这样的反例共找到了48个,这些48个费马合数可以分成三类:当n=5,6,7时,得到了的标准分解式;当 n=8,9,10,11,12,13,15,16,18,19,21,23,25,26,27,30,32,36,38,39,42,52,55,58,63,73,77,81,117,125,144,150,207,226,228,250,267,268,284,316,452,556,744,1945时,只知道的部分质因数;当n=14时,只知道是合数,但是它们的任何真因数都不知道。实际上千百年来,数学家们一直在寻找这样的一个公式,一个能求出所有质数的公式。但直到现在。谁也未能找到这样一个公式。而且谁也未能找到证据,说这样的公式就一定不存在;这样的公式存不存在,也就成了一个著名的数论难题。虽然费马数作为一个关于质数公式的尝试失败了,但有意思的是,1801年数学家高斯证明了:如果费马数k是质数的话,那么就可以用直尺和圆规将圆周k等分。高斯本人就根据这个定理用直尺和圆规作出了正十七边形。可见费马数与尺规作图问题有着深刻的内在联系。近年来,费马数在数字信号处理中得到应用。在对费马数的研究上,费马这位伟大的数论天才过分看重自己的直觉,轻率地做出了他一生唯一的一次错误猜测(注:费马的数学直觉是非常惊人的,他不加证明的提出了大量的命题,后来基本上都被证明是正确的,唯一错误的就是费马数猜想)。更为糟糕的是,研究的进展表明费马的猜想不但是错的,而且非常可能是大错特错了!随着电子计算机的发展,电子计算机成为数学家们研究费马数的有力工具,他们对更多的费马数进行了研究。但即便如此,在所知的费马数中竟然没有再添加一个费马质数。也就是说,迄今为止,费马质数除了被费马本人所证实的那4个外,竟然没有再发现一个!因此人们开始猜测:在所有的费马数中,除了前4个是质数外,其它的都是合数。那么在费马数列中,究竟有多少个费马数是质数或合数?是有限个还是无限个?都是数论中未解决的难题。 例7 6次16阶回文等幂和数组对 数组A =08, 19 ,23, 25, 34, 36, 45, 47, 51, 56, 62, 67, 72, 73, 84, 90; 数组B =80, 91, 32, 52, 43, 63, 54, 74, 15, 65, 26, 76, 27, 37, 48, 09 分析:它们的1次幂的和都是792 2次幂的和都是48004 3次幂的和都是3247398 4次幂的和都是234997528 5次幂的和都6次幂的和都是1392327264664 但它们的7次幂的和并不相等!注:这对数组还有一个特点,它可分裂为四对二次回文等幂和数组: 第一对:08, 19, 45, 51, 84, 90 80, 91, 54, 15, 48, 09 第二对:25, 56, 67, 72 52, 65, 76, 27 第三对:23, 36, 62 32, 63, 26 第四对:34, 47, 73 43, 74, 37 例8 16次34阶等幂和数组对 数组A = 1, 6, 8, 9, 16, 21, 31, 32, 47, 53, 68, 75, 80, 83, 87, 90, 94, 95, 102, 105, 106, 114, 115, 127, 130, 154, 155, 156, 173, 176, 180, 181, 188, 189 ; 数组B = 2, 3, 10, 11, 15, 18, 35, 36, 37, 61, 64, 76, 77, 85, 86, 89, 96, 97, 101, 104, 108, 111, 116, 12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业网络销售的智慧之道成功计划的制定与执行
- 文员工作计划中的员工培训与发展计划
- 广州店铺封店通知书
- 延迟开学吉林通知书
- 开元步行街停电通知书
- 弱电机器设备进场通知书
- 彭山小区停水通知书
- 徐州一中暑假开学通知书
- 微信诈骗投诉处理通知书
- 2023年茂名辅警协警招聘考试备考题库附答案详解(黄金题型)
- 高效学习方法讲座-高效学习方法
- 2025首届电力低空经济发展大会:电力场景具身智能检修机器人技术及应用
- 2025年行政职业能力测验题库答案解析
- 2025年及未来5年中国黑胶唱片行业发展潜力分析及投资方向研究报告
- 新能源汽车火灾扑救课件
- 面神经炎的治疗与护理
- 叉车点检维护培训课件
- 浙江市场监管检查课件
- 擦门窗劳动课课件
- 枪支的演进教学课件
- 2025年地震局公务员招录笔试专项练习含答案
评论
0/150
提交评论