




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题:5.1 角的概念推广(一)教学目的:1.掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义2. 掌握所有与角终边相同的角(包括角)的表示方法3体会运动变化观点,深刻理解推广后的角的概念;教学重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法.教学难点:终边相同的角的表示.授课类型:新授课授课时间:11月11日课时安排:2课时内容分析: 本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念,终边相同的角的表示方法. 树立运动变化的观点,理解静是相对的,动是绝对的,并由此深刻理解推广后的角的概念. 教学方法方法可以选为讨论法,通过实际问题,教师抽象并通过用几何画板多媒体课件演示角的形成更加形象直观,如螺丝扳手紧固螺丝、时针与分针、车轮的旋转等等,都能形成角的概念,给学生以直观的印象,形成正角、负角、零角的概念,明确“规定”的实际意义,突出角的概念的理解与掌握. 通过具体问题,让学生从不同角度作答,理解终边相同的角的概念,并给以表示,从特殊到一般,归纳出终边相同的角的表示方法,达到突破难点之目的.教学过程:一、复习引入:1复习:初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形这种概念的优点是形象、直观、容易理解,但它是从图形形状来定义角,因此角的范围是,这种定义称为静态定义,其弊端在于“狭隘”2生活中很多实例会不在改范围体操运动员转体720,跳水运动员向内、向外转体1080经过1小时时针、分针、秒针转了多少度?这些例子不仅不在范围,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(运动)二、讲解新课: 1角的概念的推广“旋转”形成角_A_B_O一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点突出“旋转” 注意:“顶点”“始边”“终边”“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角=210,=-150,=660, _-15_0_0 _66_0_0特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角记法:角或 可以简记成意义用“旋转”定义角之后,角的范围大大地扩大了1 角有正负之分 如:a=210 b=-150 g=6602 角可以任意大 实例:体操动作:旋转2周(3602=720) 3周(3603=1080)3 还有零角 一条射线,没有旋转角的概念推广以后,它包括任意大小的正角、负角和零角要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样2“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30、390、-330是第象限角,300、-60是第象限角,585、1180是第象限角,-2000是第象限角等3终边相同的角 观察:390,-330角,它们的终边都与30角的终边相同探究:终边相同的角都可以表示成一个0到360的角与个周角的和: 390=30+360 -330=30-360 30=30+0360 1470=30+4360 -1770=30-5360 结论:所有与a终边相同的角连同a在内可以构成一个集合: 即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和注意以下四点:(1) (2) a是任意角;(3)与a之间是“+”号,如-30,应看成+(-30);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360的整数倍三、讲解范例:例1 在0到360度范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角解:-120=-360+240,240的角与-140的角终边相同,它是第三象限角640=360+280,280的角与640的角终边相同,它是第四象限角-95012=-3360+12948,12948的角与-95012的角终边相同,它是第三象限角例2写出与下列各角终边相同的角的集合S,并把S中在间的角写出来: 解:(1) S中在-360720间的角是-1360+60=-280;0360+60=60;1360+60=420(2) S中在-360720间的角是0360-21=-21;1360-21=339;2360-21=699(3) S中在-360720间的角是-2360+36314=-35646;-1360+36314=314;0360+36314=36314四、课堂练习:1锐角是第几象限的角?第一象限的角是否都是锐角?小于90的角是锐角吗?090的角是锐角吗?(答:锐角是第一象限角;第一象限角不一定是锐角;小于90的角可能是零角或负角,故它不一定是锐角;090的角可能是零角,故它也不一定是锐角)总结有关角的集合表示锐角:|090,090的角:|090;小于90角:|902已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420,(2)-75,(3)855,(4)-510(答:(1)第一象限角,(2)第四象限角,(3)第二象限角,(4)第三象限角) _42_0_0 _-75_0 _855_0 _-510510_00五、小结 本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限本节课重点是学习终边相同的角的表示法严格区分“终边相同”和“角相等”;“轴线角”“象限角”和“区间角”;“小于90的角”“第一象限角”“0到90的角”和“锐角”的不同意义.六、课后作业:1.下列命题中正确的是( )A.终边在y轴非负半轴上的角是直角 B.第二象限角一定是钝角C.第四象限角一定是负角 D.若360(),则与终边相同2.与120角终边相同的角是( )A.600k360, B.120k360,C.120(2k1)180, D.660k360,3.若角与终边相同,则一定有( )A.180 B.0 C.360, D.360,Z4.与1840终边相同的最小正角为 ,与1840终边相同的最小正角是 .5.今天是星期一,100天后的那一天是星期 ,100天前的那一天是星期 .6.钟表经过4小时,时针与分针各转了 (填度).7.在直角坐标系中,作出下列各角(1)360 (2)720 (3)1080 (4)14408.已知锐角,B0到90的角,C第一象限角,D小于90的角求,. 9.将下列各角表示为360(,0360)的形式,并判断角在第几象限.(1)56024 (2)56024 (3)290315(4)290315 (5)3900 (6)3900参考答案:1.D 2.A 3.C 4.40 320 5.三 六 6.12014407. 8.ABA ACCCDk36090k360,kZ,k0ADD9.(1)560242002436056024与20024终边相同在第三象限(2)5602415936(2)36056024与15936终边相同在第二象限(3)29031523158360290315与2315终边相同在第一象限(4)29031533645(9)360290315与33645终边相同在第四象限(5)3900300103603900与300终边相同在第四象限(6)390060(11)3603900与60终边相同在第一象限七、板书设计(略)课 题:5.1 角的概念推广(二)教学目的:1巩固角的形成,正角、负角、零角等概念,熟练掌握掌握所有与角终边相同的角(包括角)、象限角、区间角、终边在坐标轴上的角的表示方法; 2掌握所有与角终边相同的角(包括角)、象限角、终边在坐标轴上的角的表示方法;3体会运动变化观点,逐渐学会用动态观点分析解决问题;教学重点:象限角、终边在坐标轴上的角的表示方法;教学难点:终边在坐标轴上的角的集合表示;授课类型:新授课课时安排:2课时授课时间:11月12日内容分析: 通过复习回顾,使学生进一步理解角的概念,象限角的概念.通过具体的例子,使学生掌握终边在坐标轴上的角和终边不在坐标轴上的角的集合表示以及符号语言的运用.教学过程:一、复习引入:1角的概念的推广“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角=210,=-150,=660, 特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角记法:角或 可以简记成意义用“旋转”定义角之后,角的范围大大地扩大了3 还有零角 一条射线,没有旋转角的概念推广以后,它包括任意大小的正角、负角和零角 2“象限角”角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3终边相同的角 结论:所有与a终边相同的角连同a在内可以构成一个集合: 即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和注意以下四点:(1) (2) a是任意角;(3)与a之间是“+”号,如-30,应看成+(-30);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360的整数倍二、讲解新课: 例1写出终边在y轴上的角的集合(用0到360度的角表示).解: 在0360间,终边在y轴的正半轴上的角为90,终边在y轴的负半轴上的角为270, 终边在y正半轴、负半轴上所有角分别是:S1=a|a=k360+90,kZ;S2=a|a=k360+270,kZ探究:怎么将二者写成统一表达式?S1=a|a=k360+90,kZ=a|a=2k180+90,kZ; S2=a|a=k360+270,kZ=a|a=2k180+180+90,kZ =a|a=(2k+1)180+90,kZ;终边在y轴上的角的集合是:S=S1S2=a|a=2k180+90,kZa|a=(2k+1)180+90,kZ =a|a=180的偶数倍+90,kZa|a=180的奇数倍+90,kZ =a|a=180的整数倍+90,kZ =a|a=n180+90,nZ引申:写出所有轴上角的集合a|a=k360, kZ a|a=k360+180,kZ a|a=k180,kZa|a=k360+90,kZ a|a=k360+270,kZ a|a=k180+90,kZ a|a=k90, kZ a|a=k90+45, kZ a|a=k45, kZ (最后两个可以根据实际情况处理)例2用集合的形式表示象限角第一象限的角表示为a|k360ak360+90,(kZ);第二象限的角表示为a|k360+90ak360+180,(kZ);第三象限的角表示为a|k360+180ak360+270,(kZ);第四象限的角表示为a|k360+270ak360+360,(kZ); 或a|k360-90ak360,(kZ)例3 写出角的终边在图中阴影区域内的角的集合(不包括边界) 解:.(1)60k360255k360,kZ(2)120k36045k360,kZ例4 已知a是第二象限角,问是第几象限角?2a是第几象限角?分别加以说明解:a在第二象限,k360+90ak360+180,kZ于是, k180+45k180+90, kZ, k=2n或k=2n+1当k=2n时,n360+45n360+90, 在第一象限;当k=2n+1时,n360+225n360+270, 在第三象限;当a在第二象限时,可能在第一象限,也可能在第三象限类似地,2a可能在第三、四象限或y轴负半轴上三、课堂练习:1.若360,;B180,;C90,则下列关系中正确的是( )A. B.C. D.2.若是第四象限角,则180是( ) A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.若与的终边互为反向延长线,则有( )A.180 B.180C. D.(21)180,4.终边在第一或第三象限角的集合是 .5.为第四象限角,则2在 .6.角4590的终边在第 象限.参考答案:1.D 2.C 3.D 4.k18090k180,kZ5.第三或第四象限或终边在y轴的非正半轴上6.一 二 三 四四、小结 用集合的形式表示象限角以及轴线角(终边在坐标轴上的角)(1)象限角:第一象限的角表示为a|k360ak360+90,(kZ);第二象限的角表示为a|k360+90ak360+180,(kZ);第三象限的角表示为a|k360+180ak360+270,(kZ);第四象限的角表示为a|k360+270ak360+360,(kZ); 或a|k360-90ak360,(kZ)(2)轴线角:终边在x轴正半轴上的角的集合:a|a=k360, kZ;终边在x轴负半轴上的角的集合:a|a=k360+180,kZ;终边在x轴上的角的集合:a|a=k180,kZ;终边在y轴正半轴上的角的集合:a|a=k360+90,kZ;终边在y轴负半轴上的角的集合:a|a=k360+270,kZ;终边在y轴上的角的集合:a|a=k180+90,kZ;终边在坐标轴上的角的集合:a|a=k90,kZ5区间角:锐角:(0,90),钝角:(90,180),注意区间(,)与(k360+, k360+)的区别五、课后作业:1.写出与37023终边相同角的集合S,并把S中在720360间的角写出来.2.在直角坐标系中作出角,角的终边.3.写出角的终边在图中阴影区域内的角的集合(不包括边界) 参考答案:1.1023k360,kZ在720360之间的角分别是1023 34937 70937.2. 3.(1)45k18090k180,kZ(2)150k360150k360,kZ六、板书设计(略)七、课后记:1.在360,1440中与2116终边相同的角有( )A.1个 B.2个 C.3个 D.4个2.在360,1620中与2116终边相同的角有( )A.2个 B.3个 C.4个 D.5个3.角45180,的终边落在 ( )A.第一或第三象限 B.第一或第二象限C.第二或第四象限 D.第三或第四象限4.第二象限角的集合可表示为 .5.角的终边落在一、三象限角平分线上,则角的集合是 6.角是第二象限角,则180是第 象限角;是第 象限角;180是第_象限角参考答案:1.C 2.C 3.A4.90k360180k360,kZ5.45k180,kZ6. 四 三 一 课 题:5.2弧度制(一)教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系.授课类型:新授课课时安排:2课时授课时间:11月13日内容分析: 讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.教学过程:一、复习引入:1角的概念的推广“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角=210,=-150,=660, 2度量角的大小第一种单位制角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1的角是如何定义的?规定周角的作为1的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为3探究30、60的圆心角,半径r为1,2,3,4,分别计算对应的弧长l,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度弧度制 2度量角的大小第一种单位制角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1的角是如何定义的?规定周角的作为1的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为3探究30、60的圆心角,半径r为1,2,3,4,分别计算对应的弧长l,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度弧度制 一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算: 360=2p rad 180=p rad 1= 三、讲解范例:例1 把化成弧度解: 例2 把化成度解:注意几点:1度数与弧度数的换算也可借助“计算器”进行; 2今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad , sinp表示prad角的正弦; 3一些特殊角的度数与弧度数的对应值应该记住:角度030456090120135150180弧度0/6/4/3/22/33/45/6角度210225240270300315330360弧度7/65/44/33/25/37/411/62 4应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系正角零角负角正实数零负实数 任意角的集合 实数集R例3用弧度制表示:1 终边在轴上的角的集合 2 终边在轴上的角的集合 3 终边在坐标轴上的角的集合解:1 终边在轴上的角的集合 2 终边在轴上的角的集合 3 终边在坐标轴上的角的集合 四、课堂练习:1.下列各对角中终边相同的角是( )A.() B.和C.和 D. 2.若3,则角的终边在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若是第四象限角,则一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:.8.已知集合22,B44,求AB.9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.参考答案:1.C 2.C 3.C4.2k2k,kZkk,kZ5.一 72 6. 7.28.AB4或09.五、小结 1弧度制定义 2与弧度制的互化 2.特殊角的弧度数六、课后作业:已知是第二象限角,试求: (1)角所在的象限;(2)角所在的象限;(3)2角所在范围. 解:(1)是第二象限角,+2k+2k,kZ,即+k+k,kZ. 故当k=2m(mZ)时,+2m+2m,因此,角是第一象限角;当k=2m+1(mZ)时,+2m+2m,因此,角是第三象限角. 综上可知,角是第一或第三象限角. (2)同理可求得:+k+k,kZ.当k=3m(mZ)时,,此时,是第一象限角; 当k=3m+1(mZ)时,即+2m,此时,角是第二象限角; 当k=3m+2(mZ)时,,此时,角是第四象限角. 综上可知,角是第一、第二或第四象限角. (3)同理可求得2角所在范围为:+4k22+4k,kZ. 评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如090这个区间角,只是k=0时第一象限角的一种特殊情况. (2)要会正确运用不等式进行角的表达,同时会以k取不同值,讨论形如=+k(kZ)所表示的角所在象限. (3)对于本例(3),不能说2只是第一、二象限的角,因为2也可为终边在y轴负半轴上的角+4k(kZ),而此角不属于任何象限.七、板书设计(略)课 题:5.2弧度制(二)教学目的:1巩固弧度制的理解,熟练掌握角度弧度的换算;掌握用弧度制表示的弧长公式、扇形面积公式2培养运用弧度制解决具体的问题的意识和能力3通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辩证统一的,而不是孤立、割裂的关系教学重点:运用弧度制解决具体的问题教学难点:运用弧度制解决具体的问题授课类型:新授课课时安排:2课时授课时间:11月16日教学过程:一、复习引入:1 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制 如下图,依次是1rad , 2rad , 3rad ,rad 探究:平角、周角的弧度数,(平角=p rad、周角=2p rad)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0角a的弧度数的绝对值 (为弧长,为半径)角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算: 360=2p rad 180=p rad 1= 在具体运算时,“弧度”二字和单位符号“rad”可以省略3一些特殊角的度数与弧度数的对应值应该记住:角度030456090120135150180弧度0/6/4/3/22/33/45/6角度210225240270300315330360弧度7/65/44/33/25/37/411/62 4应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系正角零角负角正实数零负实数 任意角的集合 实数集R5初中学过的弧长公式、扇形面积公式:;二、讲解新课: 1弧长公式:由公式: 比公式简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 2扇形面积公式 其中是扇形弧长,是圆的半径证:如图:圆心角为1rad的扇形面积为: 弧长为的扇形圆心角为 比较这与扇形面积公式 要简单三、讲解范例:例1求图中公路弯道处弧AB的长(精确到1m)图中长度单位为:m 解: 例2已知扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积解:设扇形的半径为r,弧长为,则有oAB 扇形的面积例3 计算和解: 例4 将下列各角化成0到的角加上的形式 解: 例5 直径为20cm的圆中,求下列各圆心所对的弧长 解: 例6 已知扇形周长为10cm,面积为6cm2,求扇形中心角的弧度数解:设扇形中心角的弧度数为(00时,角是第四象限角,则,sin+2cos=-; (2)当a0时,角是第二象限角,则.cos+2cos=.五、小结 本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标、距离与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.六、课后作业: 七.课后记: 课 题:5.3 任意角的三角函数(二)教学目的:1.理解并掌握各种三角函数在各象限内的符号.2.理解并掌握终边相同的角的同一三角函数值相等.教学重点:三角函数在各象限内的符号,终边相同的角的同一三角函数值相等教学难点:正确理解三角函数可看作以“实数”为自变量的函数授课类型:新授课课时安排:2课时授课时间:11月18日教学过程:一、复习引入:1.设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)则P与原点的距离2.比值叫做的正弦 记作: 比值叫做的余弦 记作: 比值叫做的正切 记作: 比值叫做的余切 记作: 比值叫做的正割 记作: 比值叫做的余割 记作: 以上六种函数,统称为三角函数.3.突出探究的几个问题: 角是“任意角”,当b=2kp+a(kZ)时,b与a的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等实际上,如果终边在坐标轴上,上述定义同样适用三角函数是以“比值”为函数值的函数而x,y的正负是随象限的变化而不同,故三角函数的符号应由象限确定.定义域: R R 4.注意:(1)以后我们在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 20年黄金从业考试及答案解析
- 贵州大学护理学导论题库及答案解析
- 医疗机构从业人员考试及答案解析
- 康复护理学题库案例及答案解析
- 历年考安全员证试题题库及答案解析
- 陶瓷厂合同签订记录管理规定
- 培训报告的总结
- 介入术前术后护理科普
- 水资源管理面试题目及答案解析
- 了着过的语法讲解
- 2025年中电科太力通信科技限公司招聘高频重点提升(共500题)附带答案详解
- 蕈样肉芽肿的临床特征
- 企业内部管理系统升级改造合同
- 《公路工程量计算》课件
- 风湿性心脏病的护理查房
- 阴道镜项目质量管理方案
- 索思医疗卓越产品系列穿戴式动态心电监测产品
- 次氯酸钠培训
- 腰椎间盘突出伴神经根病
- 幼儿园孩子受伤赔偿协议书范文
- 合肥市肥东县大学生乡村医生专项计划招聘考试真题
评论
0/150
提交评论