




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
您身边的志愿填报指导专家课题:双曲线教学目标:掌握双曲线的两种定义,标准方程,双曲线中的基本量及它们之间的基本关系教学重点:熟练掌握双曲线的定义、标准方程、简单的几何性质及应用.(一) 主要知识及主要方法:定义到两个定点与的距离之差的绝对值等于定长()的点的轨迹到定点与到定直线的距离之比等于常数()的点的轨迹标准方程()()简图几何性质焦点坐标,顶点,范围,准线 渐近线方程焦半径,在左支上用“”,在右支上用“”,在下支上用“”,在上支上用“”对称性关于轴均对称,关于原点中心对称;离心率的关系焦点三角形的面积:(,为虚半轴长)与共渐近线的双曲线方程()与有相同焦点的双曲线方程(且)双曲线形状与的关系:,越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔,即双曲线的离心率越大,它的开口就越阔.(二)典例分析: 问题1根据下列条件,求双曲线方程:与双曲线有共同的渐近线,且过点;与双曲线有公共焦点,且过点;以椭圆的长轴端点为焦点,且过点;经过点,且一条渐近线方程为;双曲线中心在原点,焦点在坐标轴上,离心率为,且过点. 问题3已知双曲线方程为(,)的左、右两焦点、,为双曲线右支上的一点,,的平分线交轴于,求双曲线方程.问题4(湖北联考) 已知双曲线方程为(,),双曲线斜率大于零的渐近线交双曲线的右准线于点,为右焦点,求证:直线与渐近线垂直;若的长是焦点到直线的距离,且双曲线的离心率,求双曲线的方程;延长交左准线于,交双曲线左支于,使为的中点,求双曲线的离心率.问题5已知直线:与双曲线与右支有两个交点、,问是否存在常数,使得以为直径的圆过双曲线的右焦点?(三)课后作业: (北京春)双曲线的渐近线方程是 双曲线的渐近线方程为,且焦距为,则双曲线方程为 或 双曲线的离心率,则的取值范围是 若方程表示焦点在轴上的双曲线,则的范围是 双曲线的两个焦点,点在双曲线上,且,则的面积是 与圆及圆都外切的圆的圆心轨迹方程为 过点作直线,如果它与双曲线有且只有一个公共点,则直线的条数是 过双曲线的右焦点作直线交双曲线于、两点,若,则这样的直线有 条 条 条 不存在双曲线和它的共轭双曲线的离心率分别为,则应满足的关系是 如果分别是双曲线的左、右焦点,是双曲线左支上过点的弦,且,则的周长是 (潍坊一模)双曲线的左支上的点到右焦点的距离为,则点的坐标为 设、分别为双曲线的左、右焦点,为左准线,为双曲线左支上一点,点到的距离为,已知,成等差数列,求的值设双曲线的右支上存在与右焦点和左准线等距离的点,求离心率的取值范围.(全国)设点到点、距离之差为,到轴、轴距离之比为,求的取值范围.(四)走向高考: (湖南)如果双曲线上一点到右焦点的距离为,那么点到右准线的距离是 (湖南文)已知双曲线(,)的右焦点为,右准线与一条渐近线交于点,的面积为(为原点),则两条渐近线的夹角为 (陕西)已知双曲线 ()的两条渐近线的夹角为,则双曲线的离心率为 (陕西)已知双曲线:(,),以的右焦点为圆心且与的渐近线相切的圆的半径是 (全国)设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为 (全国)已知双曲线的一条渐近线方程为,则双曲线的离心率为 (湖南)过双曲线:的左顶点作斜率为的直线, 若与双曲线的两条渐近线分别相交于点, 且, 则双曲线的离心率是 (辽宁)曲线与曲线的焦距相等 离心率相等 焦点相同 准线相同(福建文)以双曲线的右焦点为圆心,且与其右准线相切的圆的方程是 (福建)以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是 (辽宁)设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为 (安徽)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为 (江苏)在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为 (湖北文)过双曲线左焦点的直线交曲线的左支于两点,为其右焦点,则的值为 (湖南)若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2) B.(2,+) C.(1,5) D. (5,+) (陕西)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )ABCD(江西)设动点到点和的距离分别为和,且存在常数,使得证明:动点的轨迹为双曲线,并求出的方程;过点作直线双曲线的右支于两点,试确定的范围,使,其中点为坐标原点(安徽)如图,为双曲线:的右焦点.为双曲线右支上一点,且位于轴上方,为左准线上一点,为坐标原点.已知四边形为平行四边形,.写出双曲线的离心率与的关系式;当时,经过焦点且平行于的直线交双曲线于、点,若,求此时的双曲线方程.(湖北文)已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 16355-3:2025 EN Applications of statistical and related methods to new technology and product development process - Part 3: Quantitative approaches for the acquisition o
- 2025中智投资有限公司招聘3人笔试题库历年考点版附带答案详解
- 2025中国电信校园招聘春招开启笔试题库历年考点版附带答案详解版
- 2025年学前教育行业幼教资源整合与提质改造策略报告
- 2025年影像科MRI影像报告准确性评估模拟测试答案及解析
- 2025年互联网金融行业金融科技创新与普惠金融研究报告
- 2025年汽车行业共享出行模式创新研究报告
- 2025年航空航天行业航空航天装备发展前景研究报告
- 2025年自行车锁行业研究报告及未来发展趋势预测
- 2025年VR产业行业虚拟现实与沉浸体验研究报告
- 韩国历史文化课件
- 船舶管路修理技术要求
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 中建土木-基础设施工程安全生产管理标准化图册(试行)
- 生育支持政策效果评估-洞察及研究
- 医学检验科PDCA质量改进案例解析
- 《汽修维修业务接待实务》课件项目1-任务3-积累保养知识(保养+养护用品)
- 思想道德与法治(2023年版)电子版教材第一章 领悟人生真谛 把握人生方向
- 中国银行笔试英语真题
- 2025年宪法知识竞赛试题库及答案(共500题)
- 医学知识 并行心律心电图 学习课件
评论
0/150
提交评论