




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
放缩法的注意问题以及解题策略1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:;(2)在分式中放大或缩小分子或分母:;真分数分子分母同时减一个正数,则变大;,;假分数分子分母同时减一个正数,则变小,如;(3)应用基本不等式放缩:;(4)二项式定理放缩:如;(5)舍掉(或加进)一些项,如:。(6)裂项放缩:(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (11) (12) (13) (14) (15) 一、 放缩后转化为等比数列。例1. 满足:(1) 用数学归纳法证明:(2) ,求证:解:(1)略(2) 又 , 迭乘得: 点评:把握“”这一特征对“”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!例3(1)设a,nN*,a2,证明:;(2)等比数列an中,前n项的和为An,且A7,A9,A8成等差数列设,数列bn前n项的和为Bn,证明:Bn解:(1)当n为奇数时,ana,于是, 当n为偶数时,a11,且ana2,于是 (2),公比 3放缩后为差比数列,再求和例4已知数列满足:,求证:证明:因为,所以与同号,又因为,所以,即,即所以数列为递增数列,所以,即,累加得:令,所以,两式相减得:,所以,所以,故得1放缩后成等差数列,再求和例2已知各项均为正数的数列的前项和为,且.(1) 求证:;(2) 求证:解:(1)在条件中,令,得, ,又由条件有,上述两式相减,注意到得 所以, , 所以(2)因为,所以,所以;4、等比公式放缩法:先放缩构造成等比数列,再求和,最后二次放缩实现目标转化。例5已知数列的各项均为正数,且满足记,数列的前项和为,且(I)数列和的通项公式;(II)求证: 略解:(I) ,。证明:(II)反思:右边是,感觉是个的和,而中间刚好是项,所以利用;左边是不能用同样的方式来实现,想到,试着考虑将缩小成是等比数列),从而找到了此题的突破口。二、放缩后裂项迭加例2数列,其前项和为求证:解:令,的前项和为当时,点评:本题是放缩后迭加。放缩的方法是加上或减去一个常数,也是常用的放缩手法。值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。例3.已知函数的图象在处的切线方程为(1)用表示出(2)若在上恒成立,求的取值范围(3)证明:解:(1)(2)略(3)由(II)知:当令且当令即将上述n个不等式依次相加得整理得点评:本题是2010湖北高考理科第21题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。例1设数列的前项的和,。设,证明:。证明:易得, =点评: 此题的关键是将裂项成,然后再求和,即可达到目标。4放缩后为裂项相消,再求和例5在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数(1)求a4、a5,并写出an的表达式;(2)令,证明,n=1,2,.解(1)由已知得,.(2)因为,所以.又因为,所以=.综上,.注:常用放缩的结论:(1)(2)三、 放缩后迭乘例4.(1) 求(2) 令,求数列的通项公式(3) 已知,求证: 解:(1)(2)略由(2)得 点评:裂项迭加,是项项相互抵消,而迭乘是项项约分,其原理是一样的,都似多米诺骨牌效应。只是求项和时用迭加,求项乘时用迭乘。6、固定一部分项,放缩另外的项;例6、求证:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。19.(本小题满分14分)已知正项数列的首项,前项和满足(1)求数列的通项公式;(2)若数列的前项和为,求证:19【解题思路】(1)当时,又,所以当时,7分(2),当时,14分19 .(本小题满分14分)已知各项均为正数的数列的前项和为,且.(1)求(2) 求数列的通项;(3) 若,,求证:【答案解析】(I) (II) (III) 解析:解:(1)令,得, 2分(2)又有3分-得4分 6分 8分(3)n=1时=1符合9分时,因为,11分所以.13分14分19(本题满分分)设数列的前项和为,已知,.(1)求数列的通项公式;(2)证明:对一切正整数,有.解:本题考查数列的通项与前n项和的关系、等差数列的通项公式、裂项求和、放缩法等基础知识和基本方法,考查化归与转化思想、分类与整合思想,考查考生的运算求解能力、逻辑推理能力以及分析问题、解决问题能力(1)(解法一) 依题意,又,所以 (2分) 当, ,两式相减得整理得 ,即, (6分)又,故数列是首项为1,公差为1的等差数列,所以所以 (8分)(解法二) , ,得, .(2分) 猜想 .(3分) 下面用数学归纳法证明: (1)当时,猜想成立; (2)假设当时,猜想也成立,即 .(4分) 当时,= ,.(5分) 时,猜想也成立 .(6分) 由(1),(2)知,对于,猜想成立。 ,当,也满足此式,故 .(8分)(2)证明:当; (9分)当; (10分)当, (12分)此时综上,对一切正整数n,有 (14分)19.(本小题满分14分)数列的首项且满足.(1)证明数列是等差数列;(2)求数列的前项和.来源:www.shulih例1、若是自然数,求证证明: = =注意:实际上,我们在证明的过程中,已经得到一个更强的结论,这恰恰在一定程度上体现了放缩法的基本思想。例2、求证:证明:由(是大于2的自然数) 得4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。再看例2,若构造函数,则前后不等号不一致,不能确定的单调性,此时放缩过当,此题不适宜用单调函数放缩法。若要证明,则,所以,从而递增,所以成立,此时用单调函数放缩法可行。同样的题干,稍有调整,我们所用的方法便有不同。5、放缩法的策略以及精度的控制例10已知数列的前项和为,且满足。(I)数列是否为等差数列?并证明你的结论; (II)求和;(III)求证:。简解:(1)(2);(3)证法一:当时,成立;当,= 综上所述,。证法二:。点评:两种证法的不同在于策略的选择不同。方法一是将放大成,需从第二项起,要分类讨论;而方法二是将放大成。明显比大很多,比更接近。从中可以发现放缩后的式子越接近放缩前的式子,即放缩程度越小,精确程度越高,保留的项就越少,运算就越简单。因此,在放缩时,要尽量缩小放缩度,提高放缩精度,避免运算上的麻烦。本文选取的例题都是高考或模拟考中的压轴题,有一定难度,从中我们可以发现放缩法是证明数列型不等式的压轴题的最重要的方法。对于某个题目可能用到单一的放缩法,也可能用到复合型的放缩法,在平时或考试中遇到数列型不等式的证明问题,我们不能望题兴叹,也不能轻言放弃,更不能盲目瞎撞。多想几个为什么:用放缩法能否解决,是哪种类型的放缩法,要注意什么问题等等。只有正确把握了放缩法的方法思路和规律特征,我们在证明数列型不等式的压轴题时,就会豁然开朗,快速找到突破口,成为解决此类题的高手。一先求和后放缩例1正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和2设数列满足求的通项公式;(1) 若求证:数列的前n项和分析:(1)此时我们不妨设即与已知条件式比较系数得又是首项为2,公比为2的等比数列。.(2) 由(1)知. 当时,当n=1时,=1也适合上式,所以,故方法一:,(这步难度较大,也较关键,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿克苏地区2025-2026学年八年级下学期语文月考测试试卷
- 社区消防知识培训课件讲稿
- 社区消防知识培训课件图文版
- 甘肃省陇南市礼县2024-2025学年下学期七年级期末数学试卷(含答案)
- 社区治安调解课件模板
- 社区服务课件
- 租车转让合同范本
- 临时劳务合同范本保洁
- 求购林地种树合同范本
- 社区建筑基本知识培训课件
- 【完整版】2025年二级建造师《建筑实务》考试真题及答案
- 水库维修承包合同协议书范本
- 建筑公司分包合同管理办法
- 2025至2030苏打水行业发展趋势分析与未来投资战略咨询研究报告
- 2025年秋季学期德育工作计划:向下扎根向上开花
- 2025-2030中国家政服务行业信用体系建设与服务质量监管报告
- 2025年浙江省中考英语真题(解析版)
- 2025年安徽省普通高中学业水平选择性考试(物理)科目高考真题+(答案解析版)
- 2025年成都东部集团有限公司及下属企业招聘考试笔试试卷【附答案】
- 各分项工程质量保证措施
- 国税编制管理办法
评论
0/150
提交评论