二阶非齐次微分方程.ppt_第1页
二阶非齐次微分方程.ppt_第2页
二阶非齐次微分方程.ppt_第3页
二阶非齐次微分方程.ppt_第4页
二阶非齐次微分方程.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二阶常系数非齐次线性方程 对应齐次方程 通解结构 常见类型 难点 如何求特解 方法 待定系数法 自由项为 二阶常系数非齐次线性微分方程 一 型 设非齐方程特解为 代入原方程 综上讨论 注意 上述结论可推广到n阶常系数非齐次线性微分方程 k是重根次数 特别地 例1 解 特征方程 特征根 对应齐次方程通解 代入方程 得 原方程通解为 求通解 解 特征方程 特征根 齐通解 即 代入 式 非齐通解为 例2 分别是 的实部和虚部 可设 辅助方程 由分解定理 分别是以 为自由项的非齐次线性微分方程的特解 注意 上述结论可推广到n阶常系数非齐次线性微分方程 例3 解 对应齐方通解 作辅助方程 代入上式 所求非齐方程特解为 取虚部 原方程通解为 这种方法称为复数法 例4 解 对应齐方通解 作辅助方程 代入辅助方程 所求非齐方程特解为 取实部 原方程通解为 注意 例5 解 对应齐方程通解 用常数变易法求非齐方程通解 原方程通解为 例6 求通解 解 相应齐方程 特征方程 齐通解 先求 的特解 设 代入方程 再求 的特解 考虑辅助方程 可设 代入方程得 取实部得 原方程的特解 所求通解为 例7 设 具有连续的二阶偏导数 且满足 求u的表达式 解 记 则 同理 这是一个二阶常系数非齐次线性微分方程 解得 一链条悬挂在一钉子上 起动时一端离钉子8米 另一端离钉子12米 若不计摩擦力 求此链条滑过钉子所需的时间 下段重为 解 设时刻t链条下落了x米 另设链条单位长重为 则上段重为 由Newton第二定律 例8 特征方程 特征根 齐通解 特解 故 代入初始条件 解得 三 小结 待定系数法 只含上式一项解法 作辅助方程 求特解 取特解的实部或虚部 得原非齐方程特解 思考题 写出微分方程 的待定特解的形式 思考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论