




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率(选修2-3)05-061. 甲、乙、丙3人投篮,投进的概率分别是, , .现3人各投篮1次,求:()3人都投进的概率;()3人中恰有2人投进的概率.2. 在某种项目的射击比赛中,若第一次未击中目标,可以进行第二次射击;若第二次未击中目标,可以进行第三次射击,若命中目标则停止射击。各次射击相互独立,每次射击命中目标的概率都为,求在三次射击中命中目标的概率。3. 某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响。(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);4甲、乙两人在罚球线投球命中的概率分别为.()甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;()甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.5. 在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。()求所选用的两种不同的添加剂的芳香度之和等于4的概率;()求所选用的两种不同的添加剂的芳香度之和不小于3的概率;6. 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的(I)求袋中所有的白球的个数;(II)求甲取到白球的概率.7 . 设甲、乙、丙三台机器是否需要照顾相互之间没有影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,()求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;()计算这个小时内至少有一台需要照顾的概率.8. 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:()该应聘者用方案一考试通过的概率;()该应聘者用方案二考试通过的概率.9. 某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为;在实验考核中合格的概率分别为,所有考核是否合格相互之间没有影响()求甲、乙、丙三人在理论考核中至少有两人合格的概率;()求这三人该课程考核都合格的概率。(结果保留三位小数)10.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.()分别求该应聘者用方案一和方案二时考试通过的概率;()试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)11. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I)求甲第二、三次击中目标的概率;(II)求乙至多击中目标2次的概率; ()求甲恰好比乙多击中目标2次的概率12. 加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为、,且各道工序互不影响. ()求该种零件的合格率; ()从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.13. 某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. ()在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; ()在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; ()当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).14. 甲、乙两人各射击一次,击中目标的概率分别是和. 假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.()求甲射击4次,至少有1次未击中目标的概率;()求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;()假设某人连续2次未击中目标,则停止射击. 问:乙恰好射击5次后,被中止射击的概率是多少?15. 某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. ()求3个景区都有部门选择的概率; ()求恰有2个景区有部门选择的概率.16 . 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。()求甲坑不需要补种的概率;()求3个坑中恰有1个坑不需要补种的概率;()求有坑需要补种的概率。17. 某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。(I)求抽检的6件产品中恰有一件二等品的概率;(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。18. 甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有 2个红球,n个白球,现从甲、乙两袋中任取 2个球。 ()若,求取到的4个球全是红球的概率; ()若取到的4个球中至少有 2个红球的概率为 ,求 n。19. 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):()恰好有两家煤矿必须整改的概率;()某煤矿不被关闭的概率;()至少关闭一家煤矿的概率.20. 每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率;(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。21. A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有 效的概率为,服用B有效的概率为。()求一个试验组为甲类组的概率;()观察3个试验组,求这3个试验组中至少有一个甲类组的概率。22. 盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:()抽出的3张卡片上最大的数字是4的概率;()抽出的3张中有2张卡片上的数字是3的概念;()抽出的3张卡片上的数字互不相同的概率.23. 某商场举行抽奖促销活动,抽奖规则是:从装有 9 个白球、 1 个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二等奖;摸出两个红球获得奖一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求(1)甲、乙两人都没有中奖的概率; (2)甲、乙两人中至少有一人获二等奖的概率.24. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率;(2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率25. 在箱子中装有十张卡片,分别写有1到10的十个整数,从箱子中任取出一张卡片,记下它的读数x,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y,试求:(1)x+y是10的倍数的概率;(2)xy是3的倍数的概率.26. 甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为、。若在一段时间内打进三个电话,且各个电话相互独立。求:()这三个电话是打给同一个人的概率;()这三个电话中恰有两个是打给甲的概率;27. 有6个房间安排4个旅游者,每人可以进住任一房间,且住进各房间是等可能的,试求下列个事件的概率:(1)事件A: 指定的4个房间中各有一人;(2) 事件B: 恰有4个房间中各有一人;(3) 事件C: 指定的某个房间中有2人;(4) 事件D: 第一号房间中有1人,第二号房间中有3人.28. 有10间产品,其中有2件次品,每次抽1件检验,共抽取5次,在以下两种方式下:(1)每次抽取后不放回;(2)每次抽取后放回.求5 次抽取中恰有1次抽到次品的概率29. 甲、乙两人进行五局三胜制乒乓球比赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,求甲取胜的概率。30. 某产品有3件次品,7件正品,每次取1件测试,取后不放回(1)求恰好到第5次3 只次品全部被测出的概率;(2)求恰好到第次3 只次品全部被测出的概率的最大值和最小值。31. 甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求(1)恰有1人译出密码的概率;(2)若要达到译出密码的概率为,至少需要多少这样的人?32. 一门大炮打中一架飞机的概率为0.6,问:至少需要几门这样的大炮同时发射,才能保证打中一架飞机的概率超过99?概率(选修23)答案05-061. () P(A1A2A3)=P(A1) P(A2) P(A3) = = () P(B)=P(A2A3)+P(A1A3)+P(A1A2) =P()P(A2)P(A3)+P(A1)P()P(A3)+P(A1)P(A2)P() =(1) + (1) + (1) = 2. +(1一)+(1一)(1一)=3. () ();4. () () 甲、乙两人各投球二次均不命中的概率为 甲、乙两人各投球两次至少有一次命中的概率 5. ()芳香度之和等于4的取法有2种:、,故。() 芳香度之和等于1的取法有1种:;芳香度之和等于2的取法有1种:,故。6. (I) 设袋中原有个白球,由题意知可得或(舍去)即袋中原有3个白球.(II) 7.() P(AB)=P(A)P(B)=0.05P(AC)=P(A)P(C)=0.1P(BC)=P(B)P(C)=0.125解得:P(A)=0.2;P(B)=0.25;P(C)=0.5 所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5()甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为这个小时内至少有一台需要照顾的概率为8. () 应聘者用方案一考试通过的概率 p1=P(AB)+P(BC)+P(AC)+P(ABC) =0.50.60.1+0.50.60.9+0.50.40.9+0.50.60.9=0.03+0.27+0.18+0.27=0.75.() 应聘者用方案二考试通过的概率 p2=P(AB)+P(BC)+ P(AC) =(0.50.6+0.60.9+0.50.9)=1.29=0.439. () () 10.() 应聘者用方案一考试通过的概率应聘者用方案二考试通过的概率() 即采用第一种方案11 (I) (II) 乙至多击中目标2次的概率为1=; () 12.() ; () 零件的合格品率为, 至少取到一件合格品的概率为 或13.(I) 在第一次更换灯泡工作中,不需要换灯泡的概率为需要更换2只灯泡的概率为(II)1、2次都更换(1-p1)2;第一次未更换第二次需要更换p1(1-p2),故所求的概率为(III)故至少换4只灯泡的概率为14.() .(II),. .().15. (I) P(A1)=(II) P(A2)=1P(A1)P(A3)=或P(A2)=16. (I) =1(10.5)3 =0.875.(II)()2=0.041.(III)所以有坑需要补种的概率为 1()3=0.330.17. (I)依题意所求的概率为 = (II)所求的概率为18.()() 所以 解得,或(舍去), 故 .19.()恰好有两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校幼儿园自评报告
- 凉州词王瀚教学课件
- 新解读《GB-T 36773 - 2018竹制品检疫处理技术规程》
- 用电应急知识培训内容课件
- 生鲜期货基础知识培训课件
- 生物采样基础知识培训课件
- 急性淋巴细胞白血病护理查房
- 2025年小学数学毕业升学考试易错题型强化训练模拟试卷
- 白塞病血管病变护理查房记录
- 2025至2030中国分布式能源行业产业运行态势及投资规划深度研究报告
- 双J管健康宣教
- 混凝土裂缝处理的讲座
- 如何提高美术课堂教学的有效性
- 茂县生活垃圾资源化综合利用项目环评报告
- 水电站新ppt课件 第一章 水轮机的类型构造及工作原理
- 护理查对制度课件
- 市政工程占道施工方案
- GB/T 39965-2021节能量前评估计算方法
- GB/T 20671.1-2006非金属垫片材料分类体系及试验方法第1部分:非金属垫片材料分类体系
- GB/T 17449-1998包装玻璃容器螺纹瓶口尺寸
- PMC知识培训课件
评论
0/150
提交评论