光纤放大器.doc_第1页
光纤放大器.doc_第2页
光纤放大器.doc_第3页
光纤放大器.doc_第4页
光纤放大器.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长江师范学院物理学及电子工程学院2009级电子信息科学与技术专业现代通信技术课程论文光纤放大器学号:200907031107 姓名:唐珊平 专业:电子信息科学与技术摘要:光纤通信发展的目标是提高通信能力和通信质量,降低价格,满足社会需要。进入20世纪90年代以后,光纤通信成为一个发展迅速、 技术更新快、新技术不断涌现的领域。光纤放大器的出现极大地推动了光纤通信的发展,特别是掺铒光纤放大器,在短短的几年时间得到了迅速的发展。 关键词:光纤放大器;光纤拉曼放大器;半导体光放大器;掺铒光纤放大器随着网络时代的到来,人们对信息的需求越来越大,这就要求通信技术快速发展。光纤作为一种具有大容量、低损耗、保密性好、抗干扰性强、材料资源丰富等优点的传导介质,使得光纤通信成为发展最快的一门通信技术。也就使得光纤放大器迅速的发展起来了。 一、光放大器的发展历史1980年以后,首先出现了利用半导体技术的半导体光放大器SOA(Semiconductor Optical Amplifier)的法布里泊罗型半导体激光放大器,并开始对行波式半导体激光放大器进行研究。另一方面,随着光纤技术的发展,出现了利用光纤非线性效应的光纤拉曼放大器。1987年,英国南安普敦大学和美国AT&T Bell实验室报道了离子态的稀土元素铒在光纤中可以提供1.55m波长处的光增益,这标志着掺铒光纤放大器(EDFA)的研究取得突破性进展。短短几年时间,EDFA迅速走向实用化,由于光纤放大器的问世,在1990年到1992年不到两年的时间里光纤系统的容量增加了整整一个数量级,而在此之前为达到相同的增长却花费了整整8年时间。这明确表明了光放大器的巨大作用,为光纤通信展现了无限广阔的发展前景。二、光放大器的分类(1)半导体光放大器(SOA)半导体光放大器的优点是小型化,容易与其他半导体器件集成; 缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。(2)光纤放大器掺铒光纤放大器(EDFA)分布光纤拉曼放大器(DRA)非线性光纤放大器三、掺铒光纤放大器光纤放大器的性能与光偏振方向无关,器件与光纤的耦合损耗很小,因而得到广泛应用。光纤放大器实际上是把工作物质制作成光纤形状的固体激光器,所以也称为光纤激光器。 20世纪80年代末期,波长为1.55 m的掺铒(Er)光纤放大器(EDFA: ErbiumDoped Fiber Amplifier)研制成功并投入实用,把光纤通信技术水平推向一个新高度,成为光纤通信发展史上一个重要的里程碑。(一)掺铒光纤放大器的工作原理如图1,在掺铒光纤(EDF)中,铒离子(Er3+)有三个能级: 其中能级1代表基态, 能量最低;能级2是亚稳态,处于中间能级;能级3代表激发态, 能量最高。1.浦(Pump, 抽运)光的光子能量等于能级3和能级1的能量差时,铒离子吸收泵浦光从基态跃迁到激发态(13)。2.是激发态是不稳定的,Er3+很快返回到能级2(无辐射跃迁)。3.果输入的信号光的光子能量等于能级2和能级1的能量差,则处于能级2的Er3+将跃迁到基态(21),产生受激辐射光,因而信号光得到放大。图1 能级图从掺铒光纤放大器的工作原理可以看出,光放大是由于泵浦光的能量转换为信号光的结果。为提高放大器增益, 应提高对泵浦光的吸收, 使基态Er3+尽可能跃迁到激发态,图 2示出EDFA增益和吸收频谱。波长在1.5 m附近时,吸收和增益最大。图2 EDFA增益和吸收频谱图3示出输出信号光功率和输入泵浦光功率的关系, 由图可见,泵浦光功率转换为信号光功率的效率很高,达到92.6%。当泵浦光功率为60 mW时,吸收效率(信号输入光功率-信号输出光功率)/泵浦光功率为88%。图3 输出信号光功率和输入泵浦光功率的关系图4是小信号条件下增益和泵浦光功率的关系,当 泵浦光功率小于6mW时,增益线性增加,增益系数为6.3dB/m。图4 小信号条件下增益和泵浦光功率的关系 (二)掺铒光纤放大器的构成和特性图5为光纤放大器构成原理图,主要构成部件及功能为:图5 光纤放大器构成原理图1.隔离器:防止反射光影响光放大器的工作稳定性。2.光耦合器(波分复用器):把信号光和泵浦光混合起来。3.珥光纤:长约10100m, Er 3+浓度约为25mg/kg。4.浦光源:形成粒子数反转分布。光功率为10100mW,工作波长为0.98 m。(三)EDFA构成器件的性能选择EDFA的增益取决于Er 3+的浓度、光纤长度和直径以及泵浦光功率等多种因素,通常由实验获得最佳增益。1.泵浦光源的基本要求是大功率和长寿命。波长为1480 m的InGaAsP多量子阱(MQW)激光器, 输出光功率高达100 mW, 泵浦光转换为信号光效率在6 dB/mW以上。波长为980 nm的泵浦光转换效率更高,达10 dB/mW,而且噪声较低,是未来发展的方向。2.波分复用器的基本要求是插入损耗小。熔拉双锥光纤耦合器型和干涉滤波型波分复用器最适用。3.光隔离器的作用是它的基本要求是插入损耗小,反射损耗大。图6是EDFA商品的特性曲线,图中显示出增益、 噪声指数和输出信号光功率与输入信号光功率的关系。在泵浦光功率一定的条件下,当输入信号光功率较小时,放大器增益不随输入信号光功率而变化,基本上保持不变。 当信号光功率增加到一定值(一般为-20 dBm) 后,增益开始随信号光功率的增加而下降, 因此出现输出信号光功率达到饱和的现象。掺铒光纤越长,饱和度越深。图6 EDFA商品特性曲线(四)掺铒光纤放大器的优点和应用EDFA有许多优点, 并已得到广泛应用。EDFA的主要优点有:1.作波长正好落在光纤通信最佳波段(15001600 nm); 其主体是一段光纤(EDF),与传输光纤的耦合损耗很小,可达0.1 dB。2.增益高,约为3040 dB; 饱和输出光功率大, 约为1015 dBm; 增益特性与光偏振状态无关。3.噪声指数小,一般为47 dB; 用于多信道传输时,隔离度大,无串扰,适用于波分复用系统。4.频带宽,在1550 nm窗口,频带宽度为2040 nm, 可进行多信道传输,有利于增加传输容量。如果加上1310 nm掺镨光纤放大器(PDFA),频带可以增加一倍。所以“波分复用+光纤放大器”被认为是充分利用光纤带宽增加传输容量最有效的方法。1550 nm EDFA在各种光纤通信系统中得到广泛应用,并取得了良好效果。副载波CATV系统,WDM或OFDM系统,相干光系统以及光孤子通信系统,都应用了EDFA,并大幅度增加了传输距离。 EDFA的应用, 归纳起来可以分为三种形式, 如图7所示。(1)中继放大器(LA)。(2)前置放大器(PA)。(3)后置放大器(BA)。图7光纤放大器的应用形式(a) 中继放大器; (b) 前置放大器和后置放大器 四、半导体光放大器 现代光放大器中最早出现的是半导体光放大器(SOA)。它的基本结构、原理和特性与半导体激光器非常相似。它们工作原理都是基于激光半导体介质固有的受激辐射光放大机制,所不同的在于SOA去掉了构成激光振荡的谐振腔,并且SOA使用电流直接激励驱动的。 半导体光放大器的优点是尺寸小、频带宽、增益高;但缺点是与光纤的耦合损耗太大、易受环境温度的影响、工作稳定性较差。但半导体光放大器容易集成,适宜同光集成和光电集成电路结合使用。 通常光半导体放大器分为两大类:一种是将普通半导体激光器用作光放大器,称为法布里泊罗(F-P)半导体激光放大器(FPA),另一种是在F-P激光器的两个端面上涂上抗反射膜,以获得宽频、低噪的高输出特性。由于这种放大器是在光行进过程中对光进行放大的,故被称为行波式光放大器。 五、光纤拉曼放大器 拉曼放大器是建立在拉曼放大工作原理之上。所谓拉曼放大实际上是放大器的一个非谐振过程,其放大增益相应仅仅依赖于泵浦波长。因此只要选择合适的泵浦源就可以获得任意波长的拉曼放大。 EDFA的出现确实极大的促进了现代光通信系统的发展。但是随着现代光网络进一步发展:一方面EDFA已经不能满足现有系统对超大容量的要求另一方面EDFA也会带来光信号信噪比的不断恶化而不能满足超长距离传输的要求。 为此,必须要提出一种既要满足超宽带宽要求,又能满足超低噪声要求的新型光放大器。光纤拉曼放大器(FRA)由于其自身固有的全波段可放大、噪声指数小等特性,成为了新一代放大器的首选。除此之外拉曼放大器还具备另外一个非常突出的优点就是能同其他光放大器(比如EDFA)进行有机结合,通过有机的混合使用可以构成宽带宽、低噪声、增益平坦、高输出功率、响应时间短的混合放大系统。但这种混合放大系统也有对所需泵浦功率较大、对光偏振敏感的缺点。另外由于拉曼放大器的增益较低,从经济性的角度考虑,它不适合单独做功率放大器。因此拉曼放大器特别适

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论