四旋翼自主飞行器(最终) - 副本.doc_第1页
四旋翼自主飞行器(最终) - 副本.doc_第2页
四旋翼自主飞行器(最终) - 副本.doc_第3页
四旋翼自主飞行器(最终) - 副本.doc_第4页
四旋翼自主飞行器(最终) - 副本.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-学校统一编号 JMSU-B-001 学校名称 佳木斯大学 队长姓名 夏玉峰 队员姓名 张振林 武宁波 指导教师姓名 蒋野 2013年9月7日 四旋翼自主飞行器目录摘要:3一、系统方案论证41.1 姿态模块的论证与选择41.2 电源模块的论证与选择41.3飞行方式的论证与选择51.4 电机驱动模块的论证与选择5二、系统理论分析与计算62.1 模糊控制算法的分析62.2 系统电流估算8三、电路与程序设计83.1电路的设计83.1.1系统总体框图83.1.2 电机驱动子系统框图与电路原理图93.1.3电源93.2程序的设计103.2.1程序功能描述与设计思路103.2.2程序流程图11四、测试方案与测试结果124.1测试方案124.2 测试条件与仪器124.3 测试结果及分析124.3.1测试结果(数据)124.3.2测试分析与结论13摘要:四旋翼飞行器由主控制器、姿态采集器、电机驱动、执行机构、电源、防撞圈等六部分组成。其中,控制核心采用瑞萨单片机(R5F100LEA)负责飞行器姿态数据接收和飞行姿态控制;采用AHRS 模块(9轴姿态仪)的姿态采集器做飞行姿态反馈机构;用四块MOS管搭建大功率驱动器来驱动电机;执行机构采用四路空心杯电机实现。该飞行器还采用了模糊控制算法对当前姿态数据进行处理,同时,解算出相应电机的PWM增减量,及时调整飞行姿态,使飞行器的飞行的更加稳定。电源采用集成开关稳压块给单片机供电,使得单片机电源稳定高效。关键词:四旋翼飞行器;模糊控制算法;陀螺仪 Abstract:The four rotor aircraft by the power supply, main controller, attitude collector, motor driver, actuators, anticollision ring and so on six parts. Integrated a switching power supply adopts LM2596S on to the system power supply; Main controller for renesas MCU (R5F100LEA), is mainly responsible for to calculating the spacecraft attitude and offer four road PWM motor respectively; Gestures collector the AHRS - DEMO six axis gyroscope as the spacecraft attitude feedback mechanism; With four pieces of MOS tube structures, high-power power drive to drive motor; The hollow cup motor actuators for four road. This aircraft USES the fuzzy control algorithm to deal with the attitude data transformation, makes the aircraft flight attitude more stable. The aircraft has completed the basic requirement of the topic.Keywords: four rotor aircraft;gyroscope fuzzy control;algorithm一、系统方案论证系统主要由单片机控制模块、姿态采集模块、电源模块、电机驱动模块、空心杯电机和防撞圈等六部分组成,采用X型飞行模式,下面分别论证这几个模块的选择。1.1 姿态模块的论证与选择方案一:MPU6050三轴陀螺仪。MPU6050三轴陀螺仪就是可以在同一时间内测量六个不同方向的加速、移动轨迹以及位置的测量装置。单轴的话,就只可以测定一个方向的量,那么一个三轴陀螺就可以代替三个单轴陀螺。它现在已经成为激光陀螺的发展趋向,具有可靠性很好、结构简单不复杂、重量很轻和体积很小等等特点,但是其输出数据需要大量的浮点预算才能保证较高的精度,这样会影响单片机对最终的姿态控制的响应速率。方案二:光纤陀螺仪。光纤陀螺仪是以光导纤维线圈为基础的敏感元件, 由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变化,决定了敏感元件的角位移。光纤陀螺仪寿命长,动态范围大,瞬时启动,结构简单,尺寸小,重量轻,但是成本较高。方案三:AHRS模块。AHRS模块包含了MPU6050(集成3轴陀螺仪和3轴加速度计)、HMC5883L(3轴地磁传感器),BPM180气压高度计等模块。且AHRS模块内部已经进行一些数据处理,通过串口直接输出飞行器的当前姿态状态,减少了单片机进行姿态解算的运行时间消耗,进一步提高了单片机对飞行器的姿态控制。综合以上三种方案,我们选择了方案三。1.2 电源模块的论证与选择飞行器的电机电源由7.4伏的航模专用锂电池直接提供,而瑞萨单片机的工作电压在3.35.5伏之间,所以系统需要进行一次电压转换,为控制核心供电,其质量直接决定了系统的稳定性。方案一:LM7805模拟电源模块。用LM78/LM79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。然而在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。方案二:LM2596开关电源模块。LM2596系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ)和基准稳压器(1.23v),并具有完善的保护电路、电流限制、热关断电路等。利用该器件只需极少的外围器件便可构成高效稳压电路。提供有:3.3V、5V、12V及可调(-ADJ)等多个电压档次产品。而且2596的功耗较小,效率较高,适合在航模中使用以提高续航时间,能满足该系统中电路要求。方案三:AMS1117。AMS1117系列稳压器有可调版与多种固定电压版,设计用于提供1A输出电流且工作压差可低至1V。在最大输出电流时,AMS1117器件的压差保证最大不超过1.3V,并随负载电流的减小而逐渐降低。AMS1117的片上微调把基准电压调整到1.5%的误差以内,而且电流限制也得到了调整,以尽量减少因稳压器和电源电路超载而造成的压力。但是能提供的电流较小,且在大电流工作状态下易发热。而综合以上三种方案,选择方案二。1.3飞行方式的论证与选择方案一:十字飞行方式。四轴的四个电机以十字的方式排列,调整的时候应该对角调整,但是它灵活性和可调性有限。方案二:X行飞行方式。四轴的四个电机以X字的方式排列,调整的时候应该相邻两个调节,灵活性和可调性较高。X型飞行方式非常自由灵活,旋转方式多样,可以花样飞行,也可以做出很多高难度动作。综合以上两种方案,选择了方案二。1.4 电机驱动模块的论证与选择方案一:L298N驱动模块。采用L298N控制芯片,通过单片机I/O口输入改变控制端的电平,即可实现5V直流电机正反转、停止的操作。运用此方案可以很好的利用单片机程序控制达到控制电机的目的。但是经过测试发现飞行器的四路空心杯电机同时运作时电流达到56安培,然而L298N承受不了如此大的电流。方案二:4路MOS电流放大电路。通过MCU输出的信号控制MOS管的通断,达到放大驱动电流控制电机正转和反转。该电路简单,驱动能力强,体积小,非常适合作为小型空心杯电机的驱动。与L298N驱动相比较,具有驱动简单,控制方便,而且面积小,质量轻等优点。综合以上两种方案,选择了方案二。二、系统理论分析与计算 2.1 模糊控制算法的分析 由于四旋翼飞行器由四路电机带动两对反向螺旋桨来产生推理,所以如何保证电机在平稳悬浮或上升状态时转速的一致性及不同动作时各个电机转速的比例关系是飞行器按照期望姿态飞行的关键。经过反复测试发现用模糊控制算法处理姿态数据的效果比采用单纯的PID算法实现更加稳定可靠,但是需要处理的运算增多,使得单片机单位时间内进行姿态矫正的次数减少,从而一定程度上影响了系统的响应速度。模糊控制算法是对手动操作者的手动控制策略、经验的总结。模糊控制算法有多种实现形式。采用应用最早、最广泛的查表法可大大提高模糊控制的时效性,节省内存空间,本自主飞行器的设计就采用了查表法。控制时针对于不同的飞行姿态将每个电机对应的运行状态分别存放在四个五行五列的数组中,系统运行时将从陀螺仪处解算出的姿态数据与数组中的数据对比,查找并映射到相应的隶属区间,然后在隶属的区间处取得最优解进行姿态矫正。算法分析如下:如图1为算法转化分析图。90度80%0%飞行器油门范围,也即占空比-33Fuzzy处理-90度量化0度0比例转化3-3图1 算法转化过程如图2 为隶属区间划分图。YNB NS Z P PB -3 -2 -1 0 1 2 3X图2 隶属区间划分图针对不同状态设置的控制规则表格如下:1) 、第一路电机的控制规则如下Roll轴Pitch轴NBNSZPSPBNBPwmPSPwmPSPwmPBPwmPBPwmPBNSPwmZPwmZPwmPSPwmPSPwmPBZPwmNSPwmZPwmZPwmPSPwmPBPSPwmNSPwmZPwmZPwmZPwmPSPBPwmNSPwmNSPwmNSPwmZPwmPS2) 、第二路电机的控制规则如下Roll轴Pitch轴NBNSZPSPBNBPwmPBPwmPBPwmPBPwmPSPwmZNSPwmPBPwmPSPwmZPwmZPwmNSZPwmPBPwmPSPwmZPwmZPwmNSPSPwmZPwmZPwmZPwmZPwmNSPBPwmNSPwmZPwmNSPwmNSPwmNS3) 、第三路电机的控制规则如下Roll轴Pitch轴NBNSZPSPBNBPwmPBPwmZPwmNSPwmNSPwmNSNSPwmPSPwmZPwmZPwmZPwmNSZPwmPBPwmPSPwmZPwmZPwmNSPSPwmPBPwmPSPwmPSPwmZPwmZPBPwmPBPwmPBPwmPBPwmPSPwmPS4)、第四路电机的控制规则如下Roll轴Pitch轴NBNSZPSPBNBPwmNSPwmNSPwmNSPwmZPwmZNSPwmNSPwmZPwmZPwmZPwmPSZPwmNSPwmZPwmZPwmPSPwmPBPSPwmPSPwmZPwmPSPwmPSPwmPBPBPwmPSPwmPSPwmPBPwmPBPwmPB2.2 系统电流估算经测得每个电机内阻约为6左右,电机两端电压为7.4伏,则可得系统总电流约为:安培。普通的电机驱动在此情况下发热快很容易烧坏,所以选用额定电流大的MOS管驱动电机。三、电路与程序设计3.1电路的设计3.1.1系统总体框图系统总体框图如图3所示。MCU主控制器电源AHRS模块电机驱动电机1电机2电机3电机4图3 系统总体框图3.1.2 电机驱动子系统框图与电路原理图图4 MPU6050子系统电路1、 电机驱动子系统框图PWMMOS管电源电机图5 电机驱动子系统框图2、电机驱动子系统电路图6 电机驱动子系统电路3.1.3电源电源由滤波部分、稳压部分组成。为整个系统提供5V或者7.5V电压,确保电路的正常稳定工作。这部分电路比较简单,都采用三端稳压管实现,故不作详述。图7 电源子系统电路3.2程序的设计3.2.1程序功能描述与设计思路1、程序功能描述根据题目要求软件部分主要分为三部分,第一部分为无刷电机驱动部分,利用瑞萨单片机内部定时器的多路PWM输出功能,实现无刷电机驱动;第二部分为AHRS模块数据接收部分,利用瑞萨单片机内部串口USART0的接收中断,接收当前欧拉角输出;第三部分是姿态控制部分,根据接收到的欧拉角与目标欧拉角之间的差值,运用模糊控制算法,解算出相应电机的PWM调整量,设定定时的PWM输出,使飞行器姿态平衡。2、程序设计思路本设计的程序结合瑞萨单片机的特点,主要实现思路为:单片机上电、延时等待电源稳定、减少电源波动对系统的干扰,之后利用定时器设定电机PWM周期、串口初始化,在串口中断服务函数中不断接收AHRS模块发送的数据,且为了数据的有效性设定特定帧头、状态位、结束位和校验位。在初始化结束后,设定目标姿态、进入循环函数,不断检测AHRS数据是否接受完成,一旦接收到有效的姿态数据,就进入姿态控制函数。在姿态控制函数内部,利用当前四轴飞行器的Roll(翻滚) 和 pitch (俯仰)数据,结合模糊控制算法,解算出不同姿态时,每个空心杯电机需要的调整量控制电机,这样不断的接受姿态数据,解算数据,调整量输出,使四轴飞行器稳定的飞行。3.2.2程序流程图图8 程序流程图四、测试方案与测试结果4.1测试方案1、硬件测试首先,先把四轴飞行器分块拆解,用最小的最轻的元件和电路板按照配重的需要安装在四轴飞行器上,并安装上保护圈。再用物理方法测量重心,使其重心维持在四轴飞行器的中心。通过电源对做好的电压转换器进行测试,使其稳定在单片机的工作范围,尽量使其保持稳定。,2、软件仿真测试在调试程序之前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论