




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 计算传热学 第一章 计算问题的数学描述 计算传热学 第一章 计算问题的数学描述 王增辉 中科院研究生院物理科学学院 2010年 中国科学院研究生院2010 本章主要内容 传热问题的控制方程 数学特征 初始条件和边界条件 方程的简化和无量纲化 坐标性质 中国科学院研究生院2010 1 1 传热问题的控制方程 传热的三种模式 Modes of heat transfer 热传导 Thermal conduction 热对流 Thermal advection 对流换热 Convection heat transfer 热辐射 Thermal radiation 辐射换热 Radiation heat transfer 关系 共存 相互影响 控制方程的通用方程 中国科学院研究生院2010 建立数学描述举例 1 问题与假设条件 突扩区域中的对流传热 二维 稳态 不可压缩 常物性 不计重力与黏性耗散 中国科学院研究生院2010 2 控制方程 0 uv xy 22 22 1 uuvupuu xyxxy 22 22 1 uvvvpvv xyyxy 22 22 uTvTTT a xyxy 中国科学院研究生院2010 3 边界条件 1 进口边界条件 给定 u v T随y 的分布 2 固体边界条件 速度无滑移 温度无跳跃 3 中心线 00 uT v yy 4 出口边 界 数学上要求 给定u v T或其 导数随y 的分 布 实际上做不 到 数值上近似 处理 x y 2 中国科学院研究生院2010 1 2 控制方程的数学特征 控制方程 主导方程 支配方程 的分类 椭圆型方程 抛物型方程 双曲型方程 二维二阶 线性偏微 分方程 y x gfedcba yxyyxyxx ac4b y x 2 00 大于0 则为双 曲型的 过该点 有两条实的特征 线 等于0 则为抛 物型的 过该点 有一条实的特征 线 小于0 则为椭 圆型的 过该点 无实的特征线 中国科学院研究生院2010 依赖区与影响区 在x y平面上的区域R 其边界为B 中来求解上述方程 则R 中任一点P的依赖区是指R中这样一些点的集合 为了唯一 的确定P点的值 这些点上的条件必须是完全给定 源头 区 影响区 所谓R中任一点P的影响区则是指这样一些点的集 合 当P点之值变化时 这些点上的值亦必随之而变化 结果区 依赖区与影响区 中国科学院研究生院2010 椭圆型方程 抛物型方程 P 依赖区 影响区 P 依赖区 影响区 实特征线 不同类型方程的依赖区与影响区 中国科学院研究生院2010 双曲型方程 P 依赖区 影响区 实特征线 不同类型方程的依赖区与影响区 中国科学院研究生院2010 椭圆型方程 椭圆型方程 elliptic equations 求解问题相当于相当 于平衡问题或稳态问题 例如稳态导热问题 稳态非边界 层对流换热问题 椭圆型方程 elliptic equations 的影响区域是椭圆 的 与时间无关 空间的闭区域 属于边值问题 数学及数值特征 封闭边界的边值问题 boundary value problems 稳态 求解特征 所有点联立求解 用直接法或迭代法 各点间 相互影响 P x y 中国科学院研究生院2010 对于求解域内的任一点 xo yo 过该点无实的特征线 如当ac 0同号 yxgfedcba yxyyxyxx 04 2 acb 0 2 2 2 2 yx 稳态导热 椭圆型方程 3 中国科学院研究生院2010 抛物型方程 parabolic equations 方程属于非稳态 导热问题 例如1D非稳态导热 时间步进 2D稳态 边界层型的流动和换热问题 扩散忽略 主流方向步 进 影响区域以特征线为分界线 与主流方向垂直 数学及数值特征 开口边界 又称初值问题 initial value problems 非稳态时间步进性问题 采用步进 法 marching forward 求解 求解特征 从已知的初值开始 逐步推进 依存获得 适合定边界的解 求解代数方程的量可为一维的 可 节约容量 P x y 影响影响 区区 非影非影 响区响区 初 值 抛物型方程 中国科学院研究生院2010 抛物型方程 对于求解域内的任一点 xo yo 过该点有一条实的特征 线 如当ac 0 yxgfedcba yxyyxyxx 04 2 acb 非稳态导热 2 2 y a t 中国科学院研究生院2010 双曲型方程 双曲型方程 hyperbolic equations 属于波动方 程 如非Fourier导热问题 无粘性流体的非稳态问 题 无粘性流体的稳态超音速流动 波动方程 数学及数值特征 部分边界 局部影响区域 采用特 征线方法 characteristics 求解 属于步进问题 依赖区域仅在两条特征区域之间 x y 对对P P有影有影 响的边响的边 界界 P 点点P P 的依的依 赖区赖区 点点P P 的的影影 响区响区 中国科学院研究生院2010 双曲型方程 对于求解域内的任一点 xo yo 过该点有两条实的特征 线 如当ac acb 2 2 2 2 x a t 波动方程 中国科学院研究生院2010 1 3 初始条件和边界条件 数学模型 Mathematical model description 恰当的控制方程 Governing equations 定解条件 physical boundary conditions 定解条件 几何条件 geometry conditions 物理条件 physical conditions 初始条件 initial conditions 边界条件 boundary conditions 中国科学院研究生院2010 1 3 1 初始条件 初始状态特征 非稳态过程开始时待求变量分布 设定 给定系统待求变量在初始时刻的分布 对系统的影响在不同时间阶段内的表现不尽相同 初始 阶段的影响较为明显 随着时间的推移 影响逐渐减 弱 时间无限长时影响完全消失 进入新的状态 边界条件与时间无关称为稳态 边界条件与时间有关称 为非稳态 稳态问题的状态将唯一地由边界条件确定 稳态问题的状态与初始条件无关 4 中国科学院研究生院2010 1 3 2 边界条件 边界条件规定了系统的状态特征 反映了系统与环境之间 的联系与相互作用 分类 第一类边界 Dirichlet condition 给定边界上待求变 量的分布 第二类边界 Newmann condition 给定边界上待求变量 的梯度值 第三类边界 待求变量与梯度值之间的函数关系 中国科学院研究生院2010 三类边界条件的通用表达式 Robbins条件 给定变量和变 量法向导数的 联合分布 第三类边界 Neumann条件 给定变量的边 界法向导数 第二类边界 Dirichlet条 件 给定变量本身第一类边界 附注说明形式名称 n 0 0 0 0 中国科学院研究生院2010 例1 一维非稳态导热问题T1T2 b x T x T xt T 0t x TT 初始条件 0 x bx 0 x dx t dT t T bx dx t dT t T 边界条件 初始边界条件举例 中国科学院研究生院2010 例2 轴对称圆射流 x r 0 r vr r 1 x u r u r rr 1 r vur r 1 x uu 0 x 0v r uu 0r 0 r 0v rr0 r rv uu 初始条件 边界条件 初始边界条件举例 中国科学院研究生院2010 例3 管流 0 r vr r 1 x u 0 x 0v uu in 0r 0 r 0v 2 Dr 0 x 均匀入口 r x L D r v r rr r u r rr x u x 2 x p r vur r 1 x uu 2 r v2 r u x r v r rr 2 x v xr p r vvr r 1 x uv 在入口处 在轴线上 轴对称条件 在壁面上 0v 0u 无滑移条件 在出口处 Lx 充分发展条件 中国科学院研究生院2010 特殊边界条件 绝热边界 adiabatic boundaries 对称边界 非滑动 边界 存在对流换热的边界 5 中国科学院研究生院2010 耦合边界 耦合边界 coupled or compounded boundaries 具有不连续性的特点 存在于复合材料接触面 相变界面 phase change interfaces 作为边界时要注意 待求变量的唯一性 流量 的唯一 性 依据基本原理推导 整体求解 物性插值 不能违反物理原则 流固耦合边界 liquid solid coupling boundary 粘性流体应满足非滑移条件 流体在固体边界上的速度应该等于固体表面的速度 流体在固体边界上的温度应该等于固体表面的温度 中国科学院研究生院2010 无限边界 特指无穷远处待求变量应满足的条件 提法 发生在有限区域内的现象 在有限的时间 内 绝不会波及到无穷远处 例子 半无限大介质的非稳态导热 无穷远处的温度应维持其初始温度 无穷远处的温度梯度应该等于其初始温度梯度 稳态问题 无穷远处待求变量的取值应有界 固体壁面的存在不会影响无穷远处的速度场 中国科学院研究生院2010 气 液界面上的边界条件 考虑液体的自由表面没有 变化的气液界面 在流动的液体和气体表 面 发生着严密的动量转 移 动量流束守恒 但是气体的密度与液体相 比非常小 因此 通常气 体的动量流束忽略不计 对于Newton流体 动量流束 用来表示 即气液 交界面的边界条件为 即 这种以微分作为边界条件的 条件Neumann条件 该条件在 热传递问题内也经常遇到 如边界上热流束一定 dxdu 0 0 dxdu 中国科学院研究生院2010 无限远的边界条件 一定 在无限远处 但 计算领域内有限的一定边 界上给予边界条件 Uu inf Uu inf 中国科学院研究生院2010 流入边界 流出边界 流入边界一般给出边界上的流 速 流出边界一般给不出速度边界 条件 如果流出边界在流动方向上且 流动长度已足够长 流动已足 够发达 且在流动方向的变化 已很小 那么边界条件可认为 在流动方向的速度微分为零 数值计算中 这种边界条件称 为自由边界条件 满足此条件 的问题很多 但要注意 因实际计算领域往 往很小 选择的不确切的话 有可能使得到的解无意义 流入边 界 流出边 界 流入边 界 流出边 界 in u 0 out x u 中国科学院研究生院2010 大容积出口 开口系统 动量方程本身并不需要 但数值计算需要 假定充 分发展 0 out x u 6 中国科学院研究生院2010 中心线 0 00 v yy u 中国科学院研究生院2010 1 4 数学模型的简化 简化与化简的必要性 简化目的 偏微分方程化为常微分方程 坐标数目减少 非线形转化为线形 待求方程减少 无量纲化等 机理上的 抓住主要矛盾 采用允许的假设 坐标变换或变量变换 例子 非稳态 稳态 多维 一维 变物性 常物性 根据不同的流动类型 选择不同的方法简化守恒方程 量级分析 忽略小量级的项 边界层方程 粘性耗散函数 中国科学院研究生院2010 化简 数学上的 对方程进行数学处理 无量纲化 最重要的化简方法之一 变量代换 效果明显 数学技巧性强 注意积累 边界层相似变换 偏微分方程组 常微分方程 Boltzmann 变换 x ct 1 2 常微分方程 非 稳态导热 数学变换 Laplace变换 Fourier变换 通用积分变换 中国科学院研究生院2010 无量纲化基本步骤 定义新的无量纲因变量和自变量 s t variableindependen variablesdependent 自变量 因变量 待求变量 r r r r x xx x r r参考待求变量 如参考温度等 xr xr参考自变量 如参考时间 参考尺寸等 中国科学院研究生院2010 基本步骤 代入数学模型 整理 使整个数学模型成为无量纲的形式 适当选取 r r xr和 xr等量 使方程最简 中国科学院研究生院2010 如何确定无量纲化方案 一般规律 流速 用已知流速或Re或其他参数的组合 如 l 换热系数 用Bi或Nu 时间 用Fourier数 空间坐标 已知尺寸 或其他参数的组合 如 3 2 2 g 7 中国科学院研究生院2010 无量纲化 nondimensionalization 的优点 使数学模型得到最大限度的化简 众多的系数从方程中消失 参变量的数目大大减少 减少了数值计算工作量 方便了结果的表达 减少了因量纲错误造成的错误 所得到的结果和结论更具有一般性 中国科学院研究生院2010 1 5 坐标性质 坐标分类 单向坐标 对某一坐标来说
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 码头维修工程施工合同协议书
- 生产安全培训50条禁令课件
- 关于设立“XXX企业奖学金”的合作协议书7篇
- 安全施工培训例会记录课件
- 安全方针培训会议内容课件
- 安全文明驾驶培训讲座课件
- 理性主义课件
- 电缆工程加速推进方案(3篇)
- 蒙山远卓兴全医院建设项目环境影响报告表
- 玲铃的画完整课件
- 2025年国家电网公司招聘岗位竞聘模拟题及答案
- 隧道施工应急预案与响应方案
- 2025年广播电视技术能手预选赛竞赛试题含答案
- 食品添加剂培训课件
- 2025年健身教练专业技能测评考试试题及答案解析
- 2025年山东高考化学试题及答案
- 环卫人员安全知识培训课件
- 诉讼业务培训课件
- 2025青海黄南尖扎县公安局面向社会招聘警务辅助人员35人笔试参考题库附答案解析
- 2025年秋期新教材教科版二年级上册小学科学教学计划+进度表
- 12345热线培训课件
评论
0/150
提交评论