


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题: 第03课时 一般形式的柯西不等式教学目标:1.认识柯西不等式的几种不同形式,理解其几何意义; 2.通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法教学重点:一般形式柯西不等式的证明思路,运用这个不等式证明不等式。教学难点:应用一般形式柯西不等式证明不等式。教学过程:一、复习引入:定理1:(柯西不等式的代数形式)设均为实数,则,其中等号当且仅当时成立。定理2:(柯西不等式的向量形式)设,为平面上的两个向量,则,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。定理3:(三角形不等式)设为任意实数,则: 二、讲授新课:类似的,从空间向量的几何背景业能得到|.| | .将空间向量的坐标代入,可得到这就是三维形式的柯西不等式.对比二维形式和三维形式的柯西不等式,你能猜想出一般形式的柯西不等式吗?定理4:(一般形式的柯西不等式):设为大于1的自然数,(1,2,)为任意实数,则:即,其中等号当且仅当时成立(当时,约定,1,2,)。证明:构造二次函数: 即构造了一个二次函数:由于对任意实数,恒成立,则其,即:,即:,等号当且仅当,即等号当且仅当时成立(当时,约定,1,2,)。如果()全为0,结论显然成立。三、应用举例:例3 已知a1,a2,an都是实数,求证:分析:用n乘要证的式子两边,能使式子变成明显符合柯西不等式的形式。例4已知a,b,c,d是不全相等的实数,证明:a2 + b2 + c2 + d2 ab + bc + cd + da 分析:上式两边都是由a,b,c,d这四个数组成的式子,特别是右边式子的字母排列顺序启发我们,可以用柯西不等式进行证明。 分析:由形式,联系柯西不等式,可以通过构造(12+22+32)作为一个因式而解决问题。四、巩固练习:练习:1设x,y,z为正实数,且x+y+z=1,求的最小值。 2已知a+b+c+d=1,求a2+b2+c2+d2的最小值。 3已知a,b,c为正实数,且a+2b+3c=9,求的最大值。选做:4已知a,b,c为正实数,且a2+2b2+3c2=6,求a+b+c的最小值。(08广一模) 5已知a,b,c为正实数,且a+2b+c=1,求的最小值。(08东莞二模) 6已知x+y+z=,则m=x2+2y2+z2的最小值是_.(08惠州调研)五、课堂小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽师范大学出版社招聘4人考前自测高频考点模拟试题及参考答案详解一套
- 2025年甘肃交通职业技术学院招聘工作人员模拟试卷含答案详解
- 2025江西吉水县某行政单位招聘4人模拟试卷及答案详解(考点梳理)
- 2025江苏南通市公安局招聘警务辅助人员66人考前自测高频考点模拟试题及一套答案详解
- 2025届春季中核集团校园招聘正式启动考前自测高频考点模拟试题及答案详解(典优)
- 2025年洛阳古墓博物馆人才引进招录专业技术人员2名模拟试卷及完整答案详解1套
- 2025年延安通和电业有限责任公司招聘(5人)模拟试卷及答案详解(易错题)
- 2025湖南湘西州泸溪县妇幼保健计划生育服务中心招聘高校见习生5人模拟试卷及完整答案详解一套
- 2025年陕西师范大学校医院招聘(2人)考前自测高频考点模拟试题及1套参考答案详解
- 2025年滁州职业技术学院引进急需紧缺高层次人才25人模拟试卷及答案详解(易错题)
- 2025四川成都高新投资集团有限公司选聘中高层管理人员4人笔试参考题库附答案解析
- 水利工程水利工程施工技术规范
- 从安全感缺失剖析《榆树下的欲望》中爱碧的悲剧根源与启示
- 2025中证金融研究院招聘11人考试参考题库及答案解析
- 人教版(2024)八年级上册英语Unit 2 Home Sweet Home教案
- 城镇住宅建设调查技术实施方案
- 渔民安全培训课件
- 时空数据建模与预测算法-洞察阐释
- 汽车电路原理培训课件
- 2025年长江引航中心招聘笔试备考题库(带答案详解)
- 压力性损伤的个案护理
评论
0/150
提交评论