矢量期末复习题.doc_第1页
矢量期末复习题.doc_第2页
矢量期末复习题.doc_第3页
矢量期末复习题.doc_第4页
矢量期末复习题.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

矢量分析与场论复习题注意题目中出现的 1. 求下列温度场的等温线1),2)解 求等温线即设定相关的方程为常数,因此可得 ,; 1. 求下列标量场的等值面1),2), 3)解 据题意可得 , ,2. 求矢量场 经过点的矢量线方程。解 根据矢量线的定义,可得 解微分方程,可得 , 将点的坐标代入,可得 , 即 , 为所求矢量线方程。3. 求矢量场的矢量线方程。解 根据矢量线的定义,可得 解微分方程,可得 , 为所求矢量线方程。4. 设,求: 1)在点处沿矢量方向的方向导数, 2)在点处沿矢量方向的方向导数。解 的方向余弦为 ,; 又有 , 据方向导数的定义,可得 5. 求标量场在点 处沿其矢径方向的方向导数。解 的方向余弦为 ,; 又有 ,据方向导数的定义,可得 6. 设有标量场,求在点处沿该点至方向的方向导数。在点沿什么方向的方向导数达到最大值?其值是多少? 解 点至点的方向余弦为 ,; 又有 ,据方向导数的定义,可得 当方向余弦均为1时,方向导数达到最大值,即沿方向导数达最大值,7. 求下列标量场的 1);2);3); 4); 5)解 据 ,可得1)2)3)4)5)8. 求标量场在点处的梯度。解 ,则所求梯度为9. 求标量场具有最大方向导数的点及方向,所求的点满足。(提示:最大的方向导数就是在点处的梯度,模最大,且满足,即求条件极值。)解 ,将代入,可得 ,即 ,当、时,有,即点和为满足条件的点,又,即最大方向导数的方向分别为10. 设为正整数, 1)求 2)证明是常矢量)解 1) 2) 证明 设 ,则 ,因此,可得 ,证毕。11. 设S为上半球面其法向单位矢量与轴的夹角为锐角,求矢量场 沿所指的方向穿过S的通量。(提示:注意与同向)解 将用球坐标表示,则在面上有,因此,可得 12. 求均匀矢量场通过半径为的半球面的通量。(如图1-1所示)解 设半球面的方程为则矢量通过面的通量等于矢量通过面在的平面上的投影的通量,因此,13. 计算曲面积分,其中是球心在原点,半径为a的球面外侧。解 设,根据散度定理,可得14. 求矢量场从内穿出所给闭曲面的通量: 1),为球面 2),为椭球面解 1) 根据散度定理,可得2)15. 求下列空间矢量场的散度: 1) 2)解 1) 2)16. 求在给定点处的值: 1)在M(1.0,0.0,-1.0)处; 2) ,在M(1.0,1.0,3.0)处; 3)在M(1.0,3.0,2.0)处。解 1) ,则2) ,则3) ,则17. 求标量场的梯度场的散度。解 18. 已知液体的流速场 ,问点M(1.0,2.0,3.0)是否为源点?解 ,由于,所以是源点。19. 已知点电荷分别位于两点处,求从闭曲面S内穿出的电场强度通量, ,其中为: 1)不包含两点的任一闭曲面; 2)仅包含点的任一闭曲面; 3) 同时包含两点任一闭曲面。解 据高斯通量定理,可得1)2)3)20. 求矢量场 (c为常数)沿下列曲线的环量 1)圆周(旋转方向与轴成右手关系) 2)圆周(旋转方向与轴成右手关系)解 设圆周包围的曲面为,则,据斯托克斯定理,可得1) 2)21. 求矢量场在点M(1.0,3.0,2.0)处的旋度以及在这点沿方向的环量面密度。解 矢量场在点M(1.0,3.0,2.0)处的旋度为沿方向的环量面密度为 22. 设矢量场,求该矢量场沿椭圆周C:与轴成右手关系方向的环量。解 据斯托克斯定理,可得23. 求题15中各矢量场的旋度。解 ,分别可得1) 2)24. 试证明矢量恒等式和。证明 1) 对于标量函数,有 2) 对于矢量函数,有25求数量场在点处沿方向的方向导数。解:= , = , =在处有= , =, =另外,在处=则的方向余弦分别为:=;=;=所以,方向导数=+=26已知=,求。解:=+=27求数量场在点处沿曲线朝增大方向的方向导数。解:将所给的曲线方程改写成矢量形式。=其导矢=就是曲线沿大一方的方向的切向矢量。当时,正好过点,将代入得,=其方向余弦为=;=又函数在的偏导数= , = , =于是,根据方向导数的定义,所求的方向导数为=+=+=28设矢量场,问是有势场吗?若是,求出任意势函数。解:因为,所以不是有势场。29设 求(1),(2)解:根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论