枚举与迭代.doc_第1页
枚举与迭代.doc_第2页
枚举与迭代.doc_第3页
枚举与迭代.doc_第4页
枚举与迭代.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

枚举法在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法一、特点:将问题的所有可能的答案一一列举,然后根据条件判断此答案是否合适,合适就保留,不合适就丢弃。例如:找出1到100之间的素数。需要将1到100之间的所有整数进行判断。枚举算法因为要列举问题的所有可能的答案,所有它具备以下几个特点:1、得到的结果肯定是正确的;2、可能做了很多的无用功,浪费了宝贵的时间,效率低下。3、通常会涉及到求极值(如最大,最小,最重等)。二、枚举算法的一般结构:while循环。首先考虑一个问题:将1到100之间的所有整数转换为二进制数表示。算法一:for i:=1 to 100 do begin将i转换为二进制,采用不断除以2,余数即为转换为2进制以后的结果。一直除商为0为止。end;算法二:二进制加法,此时需要数组来帮忙。program p;var a:array1.100 of integer; 用于保存转换后的二进制结果i,j,k:integer;beginfillchar(a,sizeof(a),0); 100个数组元素全部初始化为0for i:=1 to 100 do begink:=100;while ak=1 do dec(k); 找高位第一个为0的位置ak:=1; 找到了立刻赋值为1for j:=k+1 to 100 do aj:=0; 它后面的低位全部赋值为0k:=1;while ak=0 do inc(k); 从最高位开始找不为0的位置 write(,i,)2=); for j:=k to 100 do write(aj); 输出转换以后的结果writeln;end;end.枚举法,常常称之为穷举法,是指从可能的集合中一一枚举各个元素,用题目给定的约束条件判定哪些是无用的,哪些是有用的。能使命题成立者,即为问题的解。采用枚举算法解题的基本思路:(1) 确定枚举对象、枚举范围和判定条件;(2) 一一枚举可能的解,验证是否是问题的解下面我们就从枚举算法的的优化、枚举对象的选择以及判定条件的确定,这三个方面来探讨如何用枚举法解题。例1:百钱买百鸡问题:有一个人有一百块钱,打算买一百只鸡。到市场一看,大鸡三块钱一只,小鸡一块钱三只,不大不小的鸡两块钱一只。现在,请你编一程序,帮他计划一下,怎么样买法,才能刚好用一百块钱买一百只鸡?算法分析:此题很显然是用枚举法,我们以三种鸡的个数为枚举对象(分别设为x,y,z),以三种鸡的总数(x+y+z)和买鸡用去的钱的总数(x*3+y*2+z)为判定条件,穷举各种鸡的个数。下面是解这个百鸡问题的程序var x,y,z:integer;beginfor x:=0 to 100 dofor y:=0 to 100 dofor z:=0 to 100 do枚举所有可能的解if (x+y+z=100)and(x*3+y*2+z div 3=100)and(z mod 3=0)then writeln(x=,x,y=,y,z=,z); 验证可能的解,并输出符合题目要求的解end.上面的条件还有优化的空间,三种鸡的和是固定的,我们只要枚举二种鸡(x,y),第三种鸡就可以根据约束条件求得(z=100-x-y),这样就缩小了枚举范围,请看下面的程序:var x,y,z:integer;beginfor x:=0 to 100 dofor y:=0 to 100-x dobeginz:=100-x-y;if (x*3+y*2+z div 3=100)and(z mod 3=0)then writeln(x=,x,y=,y,z=,z);end;end.未经优化的程序循环了1013 次,时间复杂度为O(n3);优化后的程序只循环了(102*101/2)次 ,时间复杂度为O(n2)。从上面的对比可以看出,对于枚举算法,加强约束条件,缩小枚举的范围,是程序优化的主要考虑方向。在枚举算法中,枚举对象的选择也是非常重要的,它直接影响着算法的时间复杂度,选择适当的枚举对象可以获得更高的效率。如下例:例2、将1,2.9共9个数分成三组,分别组成三个三位数,且使这三个三位数构成1:2:3的比例,试求出所有满足条件的三个三位数.例如:三个三位数192,384,576满足以上条件.(NOIP1998pj)算法分析:这是1998年全国分区联赛普及组试题(简称NOIP1998pj,以下同)。此题数据规模不大,可以进行枚举,如果我们不加思地以每一个数位为枚举对象,一位一位地去枚举:for a:=1 to 9 do for b:=1 to 9 dofor i:=1 to 9 do这样下去,枚举次数就有9次,如果我们分别设三个数为x,2x,3x,以x为枚举对象,穷举的范围就减少为,在细节上再进一步优化,枚举范围就更少了。程序如下:vart,x:integer;s,st:string;c:char;beginfor x:=123 to 321 do枚举所有可能的解begint:=0;str(x,st);把整数x转化为字符串,存放在st中str(x*2,s); st:=st+s;str(x*3,s); st:=st+s;for c:=1 to 9 do枚举9个字符,判断是否都在st中if pos(c,st)0 then inc(t) else break;如果不在st中,则退出循环if t=9 then writeln(x, ,x*2, ,x*3);end;end.在枚举法解题中,判定条件的确定也是很重要的,如果约束条件不对或者不全面,就穷举不出正确的结果, 我们再看看下面的例子。例 一元三次方程求解(noip2001tg)问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。提示:记方程f(x)=0,若存在2个数x1和x2,且x1x2,f(x1)*(x2)0,则在(x1,x2)之间一定有一个根。样例输入:1 -5 -4 20输出:-2.00 2.00 5.00算法分析:由题目的提示很符合二分法求解的原理,所以此题可以用二分法。用二分法解题相对于枚举法来说很要复杂很多。此题是否能用枚举法求解呢?再分析一下题目,根的范围在-100到100之间,结果只要保留两位小数,我们不妨将根的值域扩大100倍(-10000=x=10000),再以根为枚举对象,枚举范围是-10000到10000,用原方程式进行一一验证,找出方程的解。有的同学在比赛中是这样做vark:integer;a,b,c,d,x :real;beginread(a,b,c,d);for k:=-10000 to 10000 dobeginx:=k/100;if a*x*x*x+b*x*x+c*x+d=0 then write(x:0:2, );end;end.用这种方法,很快就可以把程序编出来,再将样例数据代入测试也是对的,等成绩下来才发现这题没有全对,只得了一半的分。这种解法为什么是错的呢?错在哪里?前面的分析好象也没错啊,难道这题不能用枚举法做吗? 看到这里大家可能有点迷惑了。在上面的解法中,枚举范围和枚举对象都没有错,而是在验证枚举结果时,判定条件用错了。因为要保留二位小数,所以求出来的解不一定是方程的精确根,再代入ax3+bx2+cx+d中,所得的结果也就不一定等于0,因此用原方程ax3+bx2+cx+d=0作为判断条件是不准确的。我们换一个角度来思考问题,设f(x)=ax3+bx2+cx+d,若x为方程的根,则根据提示可知,必有f(x-0.005)*(x+0.005)0,如果我们以此为枚举判定条件,问题就逆刃而解。另外,如果f(x-0.005)=0,哪么就说明x-0.005是方程的根,这时根据四舍5入,方程的根也为x。所以我们用(f(x-0.005)*f(x+0.005)0) 和 (f(x-0.005)=0)作为判定条件。为了程序设计的方便,我们设计一个函数f(x)计算ax3+bx2+cx+d的值,程序如下:$N+vark:integer;a,b,c,d,x:extended;function f(x:extended):extended; 计算ax3+bx2+cx+d的值beginf:=(a*x+b)*x+c)*x+d;end;beginread(a,b,c,d);for k:=-10000 to 10000 dobeginx:=k/100;if (f(x-0.005)*f(x+0.005)Epsilon); printf(“方程的近似根是%fn”,x0); 迭代算法也常用于求方程组的根,令 X=(x0,x1,xn-1) 设方程组为: xi=gi(X) (I=0,1,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 for (i=0;i x=初始近似根; do for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)delta) delta=fabs(y-x); while (deltaEpsilon); for (i=0;i printf(“变量x%d的近似根是 %f”,I,x); printf(“n”); 具体使用迭代法求根时应注意以下两种可能发生的情况: (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 递归 递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、,即: fib(0)=0; fib(1)=1; fib(n)=fib(n-1)+fib(n-2) (当n1时)。 写成递归函数有: int fib(int n) if (n=0) return 0; if (n=1) return 1; if (n1) return fib(n-1)+fib(n-2); 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1 (4)5、3、2 (5)5、3、1 (6)5、2、1 (7)4、3、2 (8)4、3、1 (9)4、2、1 (10)3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a 存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在ak中,当一个组合求出后,才将a 中的一个组合输出。第一个数可以是m、m-1、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include # define MAXN 100 int aMAXN; void comb(int m,int k) int i,j; for (i=m;i=k;i-) ak=i; if (k1) comb(i-1,k-1); else for (j=a0;j0;j-) printf(“%4d”,aj); printf(“n”); void main() a0=3; comb(5,3); 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n 件物品的重量分别为w0、w1、wn-1,物品的价值分别为v0、v1、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option ,该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop 。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) 将物品i包含在当前方案中; if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int optionN,copN; struct double weight; double value; aN; int n; void find(int i,double tw,double tv) int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weightmaxV) if (i else for (k=0;k optionk=copk; maxv=tv-a.value; void main() int k; double w,v; printf(“输入物品种数n”); scanf(“%d”,&n); printf(“输入各物品的重量和价值n”); for (totv=0.0,k=0;k scanf(“%1f%1f”,&w,&v); ak.weight=w; ak.value=v; totV+=V; printf(“输入限制重量n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k find(0,0.0,totV); for (k=0;k if (optionk) printf(“%4d”,k+1); printf(“n总价值为%.2fn”,maxv); 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include # define N 100 double limitW; int copN; struct ele double weight; double value; aN; int k,n; struct int ; double tw; double tv; twvN; void next(int i,double tw,double tv) twv.=1; twv.tw=tw; twv.tv=tv; double find(struct ele *a,int

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论