MOCVD外延生长技术简介.docx_第1页
MOCVD外延生长技术简介.docx_第2页
MOCVD外延生长技术简介.docx_第3页
MOCVD外延生长技术简介.docx_第4页
MOCVD外延生长技术简介.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MOCVD外延生长技术简介摘要:MOCVD外延技术是国内目前刚起步的技术,本文主要介绍外延的基本原理以及目前世界上主要外延生产系统的设计原理及基本构造。 外延生长的基本原理是,在一块加热至适当温度的衬底基片(主要有红宝石和SiC两种)上,气态物质In,Ga,Al,P有控制的输送到衬底表面,生长出特定单晶薄膜。目前LED外延片生长技术主要采用有机金属化学气相沉积方法。 MOCVD 金属有机物化学气相淀积(Metal-OrganicChemicalVaporDeposition,简称 MOCVD), 1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。该设备集精密机械、半导体材料、真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电子行业最有发展前途的专用设备之一。 第一章 外延在光电产业角色 近十几年来为了开发蓝色高亮度发光二极管,世界各地相关研究的人员无不全力投入。而商业化的产品如蓝光及绿光发光二级管及激光二级管的应用无不说明了族元素所蕴藏的潜能,表为目前商品化之材料及其外延技术,红色及绿色发光二极管之外延技术大多为液相外延成长法为主,而黄色、橙色发光二极管目前仍以气相外延成长法成长磷砷化镓材料为主。机台是众多机台中最常被使用来制造之机台。而或是亮度及特性的好坏主要是在于其发光层品质及材料的好坏,发光层主要的组成不外乎是单层的量子井 或是多层的量子井 ,而尽管制造的技术一直在进步但其发光层的品质并没有成正比成长,其原是发光层中铟的高挥发性和氨的热裂解效率低是机台所难于克服的难题,氨气与铟的裂解须要很高的裂解温度和极佳的方向性才能顺利的沉积在的表面。但要如何来设计适当的机台为一首要的问题而解决此问题须要考虑下列因素:要能克服成长所须的高温要能避免 金属有机蒸发源与在预热区就先进行反应进料流速与薄膜长成厚度均。一般来说的成长须要很高的温度来打断之的键解,另外一方面由动力学仿真也得知和 会进行反应产生没有挥发性的副产物。了解这些问题之后要设计适当的外延机台的最主要前题是要先了解的成长机构,且又能降低生产成本为一重要发展趋势。外延片工艺流程衬底结构设计缓冲层生长N型GaN层生长多量子阱发光层生长P型GaN层生长退火检测(光荧光、X射线)外延片外延片设计、加工掩模版光刻离子刻蚀N型电极(镀膜、退火、刻蚀)P型电极(镀膜、退火、刻蚀)划片芯片分检、分级生产工艺流程具体介绍如下: 固定:将单晶硅棒固定在加工台上。 切片:将单晶硅棒切成具有精确几何尺寸的薄硅片。此过程中产生的硅粉采用水淋,产生废水和硅渣。 退火:双工位热氧化炉经氮气吹扫后,用红外加热至300500,硅片表面和氧气发生反应,使硅片表面形成二氧化硅保护层。 倒角:将退火的硅片进行修整成圆弧形,防止硅片边缘破裂及晶格缺陷产生,增加磊晶层及光阻层的平坦度。此过程中产生的硅粉采用水淋,产生废水和硅渣。 分档检测:为保证硅片的规格和质量,对其进行检测。此处会产生废品。 研磨:用磨片剂除去切片和轮磨所造的锯痕及表面损伤层,有效改善单晶硅片的曲度、平坦度与平行度,达到一个抛光过程可以处理的规格。此过程产生废磨片剂。 清洗:通过有机溶剂的溶解作用,结合超声波清洗技术去除硅片表面的有机杂质。此工序产生有机废气和废有机溶剂。 RCA清洗:通过多道清洗去除硅片表面的颗粒物质和金属离子。具体工艺流程如下: SPM清洗:用H2SO4溶液和H2O2溶液按比例配成SPM溶液,SPM溶液具有很强的氧化能力,可将金属氧化后溶于清洗液,并将有机污染物氧化成CO2和H2O。用SPM清洗硅片可去除硅片表面的有机污物和部分金属。此工序会产生硫酸雾和废硫酸。 DHF清洗:用一定浓度的氢氟酸去除硅片表面的自然氧化膜,而附着在自然氧化膜上的金属也被溶解到清洗液中,同时DHF抑制了氧化膜的形成。此过程产生氟化氢和废氢氟酸。 APM清洗: APM溶液由一定比例的NH4OH溶液、H2O2溶液组成,硅片表面由于H2O2氧化作用生成氧化膜(约6nm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒和金属也随腐蚀层而落入清洗液内。此处产生氨气和废氨水。 HPM清洗:由HCl溶液和H2O2溶液按一定比例组成的HPM,用于去除硅表面的钠、铁、镁和锌等金属污染物。此工序产生氯化氢和废盐酸。 DHF清洗:去除上一道工序在硅表面产生的氧化膜。 磨片检测:检测经过研磨、RCA清洗后的硅片的质量,不符合要求的则从新进行研磨和RCA清洗。 腐蚀A/B:经切片及研磨等机械加工后,晶片表面受加工应力而形成的损伤层,通常采用化学腐蚀去除。腐蚀A是酸性腐蚀,用混酸溶液去除损伤层,产生氟化氢、NOX和废混酸;腐蚀B是碱性腐蚀,用氢氧化钠溶液去除损伤层,产生废碱液。本项目一部分硅片采用腐蚀A,一部分采用腐蚀B。 分档监测:对硅片进行损伤检测,存在损伤的硅片重新进行腐蚀。 粗抛光:使用一次研磨剂去除损伤层,一般去除量在1020um。此处产生粗抛废液。 精抛光:使用精磨剂改善硅片表面的微粗糙程度,一般去除量1 um以下,从而的到高平坦度硅片。产生精抛废液。 检测:检查硅片是否符合要求,如不符合则从新进行抛光或RCA清洗。 检测:查看硅片表面是否清洁,表面如不清洁则从新刷洗,直至清洁。 包装:将单晶硅抛光片进行包装。第二章 MOCVD原理反应为一非平衡状态下成长机制,其原理为利用有机金属化学气相沉积法 是一种利用气相反应物,或是前驱物和族的有机金属和族的,在基材表面进行反应,传到基材衬底表面固态沉积物的制程。利用气相反应物间之化学反应将所需产物沉积在基材衬底表面的过程,蒸镀层的成长速率和性质成分、晶相会受到温度、压力、反应物种类、反应物浓度、反应时间、基材衬底种类、基材衬底表面性质等巨观因素影响。温度、压力、反应物浓度、反应物种类等重要的制程参数需经由热力学分析计算,再经修正即可得知。 反应物扩散至基材衬底表面、表面化学反应、固态生成物沉积与气态产物的扩散脱离等微观的动力学过程对制程亦有不可忽视的影响。 化学反应机构有反应气体在基材衬底表面膜的扩散传输、反应气体与基材衬底的吸附、表面扩散、化学反应、固态生成物之成核与成长、气态生成物的脱附过程等,其中速率最慢者即为反应速率控制步骤,亦是决定沉积膜组织型态与各种性质的关键所在。对镀膜成分、晶相等品质容易控制,可在形状复杂的基材衬底上形成均匀镀膜,结构密致,附着力良好之优点,因此已经成为工业界主要的镀膜技术。制程依用途不同,制程设备也有相异的构造和型态。整套系统可分为1.进料区进料区可控制反应物浓度。气体反应物可用高压气体钢瓶经精密控制流量,而固态或液态原料则需使用蒸发器使进料蒸发或升华,再以、等惰性气体作为而将原反应物带入反应室中。2.反应室反应室控制化学反应的温度与压力。在此反应物吸收系统供给的能量,突破反应活化能的障碍开始进行反应。依照操作压力不同,制程可分为 常压 低压 超低压 。依能量来源区分为热墙式和冷墙式,如分如下()热墙式由反应室外围直接加热,以高温为能量来源()等离子辅助()电子回旋共振是电浆辅助()高周波()() 其中()至()皆为冷墙式3.废气处理系统通常以淋洗塔、酸性、碱性、毒性气体收集装置、集尘装置和排气淡化装置组合成为废气处理系统,以吸收制程废气,排放工安要求,对人体无害的气体。一般来说,一组理想的 反应系统必需符合下列条件提供洁净环境。反应物于抵达基板衬底之前以充分混合,确保膜成分均匀。反应物气流需在基板衬底上方保持稳定流动,以确保膜厚均匀。反应物提供系统切换迅速能长出上下层接口分明之多层结构。近来也有触媒制备及改质和其它方面的应用,如制造超细晶体和控制触媒得有效深度等。在可预见的未来里,制程的应用与前景是十分光明的。第三章 MOCVD 机台系列介绍现在用来生产 的外延机台大至可分为几类如下列:双向流系统 高速垂直流向系统 封闭式旋转盘外延系统 放射状横向流系统 日本酸素横向三向流系统 等等。 其水平进料气体为、等气体,垂直方向进料气体为和。其优点为让外延所成长出的膜均匀且厚度均一,其主要原理是利用垂直方向的和气体将其水平方向的进料气体、等气体往下压使其反应均匀减少反应不均匀而导致影响特性。 此类反应器为,其反应之原理为将进料气体及气体由上而下进入反应器内高温下高速转动的基板衬底上进行反应,而外延片在 部份先进抽真空之步骤,可使外延效果均匀及均一,另外的优点为机台且在高转速下可使边界层之变薄,反应器空间较大可以一次生产六片以上之外延片可做为量产型之机台。 此类反应器为密闭空间之反应器,其反应之原理为将进料气体由上而下进入反应器,气体由水平方向进入反应器内。气体在高温下、高速转动的基板衬底上进行反应,而外延片与反应器之顶端距离约,这代表可供气体反应的空间只有这么小;可使磊晶效果更加的均匀及均一。其原因为因外延片与反应气体进口之距离不大,其气体的反应空间不大,远比别种反应器小了许多,外延的效果比其它的机台来的不错。 为公司所所发明的,其优点为在常压下即可操作且反应器可容纳七片以上之外延片。 而各式各样的机台随着所须求的特色不同而有不同之设计。而所要考虑的原因有基材衬底的材质、反应温度、进料气体的影响及一些未知的变因。 为日本酸素所生产之机台,也是目前日本公司大部分所使用之机台。日本酸素之机台非量产型之机台,一次只能生产一片但其性能良好可生产高品质激光二级管都没问题。机台之操作条件:在常压及低压都可操作、控温精准,在进料气体方面其主要是将、 、平行入反应器,其利用来稳定、 之均匀混合来达到最佳之磊晶状晶效果。 第四章 回顾与前瞻 技术引入中国不过是最近几年的事,但到目前为止也仅止于一些小小的突破,技术上离欧美日甚至台湾都还有一段相当大的距离,笔者从事外延与芯片制造及研发已有相当的时间,深知外延技术的成功需要具备下列几个条件方能成熟,第一对设备的精确掌握,不论是何种机台掌握其硬件是生产顺利的不二法门,更是如此,由于各项成本很高,保养周期以及配件的准备充分都很重要。第二外延原理的掌握,材料的成长需要具备物理、材料学和分析技术三项基本功夫,能掌握这些,材料的生长就可具备一定的能力。第三持之以恒的实验精神,外延结果需要恒心的等待,因为除了基本的分析外,结果的观察与纪录,作成芯片结果的分析,都需要耐心与恒心。此次将外延系统作一个简单的介绍希望可以对刚入门的工程师有一些帮助。外延技术LED外延片的生长工艺介绍硅晶柱的长成,首先需要将纯度相当高的硅矿放入熔炉中,并加入预先设定好的金属物质,使产生出来的硅晶柱拥有要求的电性特质,接着需要将所有物质融化后再长成单晶的硅晶柱,以下将对所有晶柱长成制程做介绍:长晶主要程式:1、融化(MELtDown)此过程是将置放于石英坩锅内的块状复晶硅加热制高于摄氏1420度的融化温度之上,此阶段中最重要的参数为坩锅的位置与热量的供应,若使用较大的功率来融化复晶硅,石英坩锅的寿命会降低,反之功率太低则融化的过程费时太久,影响整体的产能。2、颈部成长(Neck Growth)当硅融浆的温度稳定之后,将方向的晶种渐渐注入液中,接着将晶种往上拉升,并使直径缩小到一定 (约6mm),维持此直径并拉长10-20cm,以消除晶种内的排差(dislocation),此种零排差(dislocation-free)的控制主要为将排差局限在颈部的成长。3、晶冠成长(Crown Growth)长完颈部后,慢慢地降低拉速与温度,使颈部的直径逐渐增加到所需的大小。4、晶体成长(Body Growth)利用拉速与温度变化的调整来迟维持固定的晶棒直径,所以坩锅必须不断的上升来维持固定的液面高度,于是由坩锅传到晶棒及液面的辐射热会逐渐增加,此辐射热源将致使固业介面的温度梯度逐渐变小,所以在晶棒成长阶段的拉速必须逐渐地降低,以避免晶棒扭曲的现象产生。5、尾部成长(Tail Growth)当晶体成长到固定(需要)的长度后,晶棒的直径必须逐渐地缩小,直到与液面分开,此乃避免因热应力造成排差与滑移面现象。切割:晶棒长成以后就可以把它切割成一片一片的,也就是外延片。芯片, 圆片,是半导体元件芯片或芯片的基材,从拉伸长出的高纯度硅元素晶柱 (Crystal Ingot)上,所切下之圆形薄片称为外延片(外延片)。磊晶:砷化鎵磊晶依制程的不同,可分为LPE(液相磊晶)、MOCVD(有机金属气相磊晶)及MBE(分子束磊晶)。LPE的技术较低,主要用于一般的发光二极体,而MBE的技术层次较高,容易成长极薄的磊晶,且纯度高,平整性好,但量产能力低,磊晶成长速度慢。MOCVD除了纯度高,平整性好外,量产能力及磊晶成长速度亦较MBE为快,所以现在大都以MOCVD来生产。其过程首先是将GaAs衬底放入昂贵的有机化学汽相沉积炉(简MOCVD,又称外延炉),再通入III、II族金属元素的烷基化合物(甲基或乙基化物)蒸气与非金属(V或VI族元素)的氢化物(或烷基物)气体,在高温下,发生热解反应,生成III-V或II-VI族化合物沉积在衬底上,生长出一层厚度仅几微米(1毫米=1000微米)的化合物半导体外延层。长有外延层的GaAs片也就是常称的外延片。外延片经芯片加工后,通电就能发出顏色很纯的单色光,如红色、黄色等。不同的材料、不同的生长条件以及不同的外延层结构都可以改变发光的顏色和亮度。其实,在几微米厚的外延层中,真正发光的也仅是其中的几百纳米(1微米=1000纳米)厚的量子阱结构。反应式: Ga(CH3)3 +PH3= GaP+3CH4外延生长技术概述由LED工作原理可知,外延材料是LED的核心部分,事实上,LED的波长、亮度、正向电压等主要光电参数基本上取决于外延材料。发光二极管对外延片的技术主要有以下四条:禁带宽度适合。可获得电导率高的P型和N型材料。可获得完整性好的优质晶体。发光复合几率大。外延技术与设备是外延片制造技术的关键所在,金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD)技术生长III-V族,II-VI族化合物及合金的薄层单晶的主要方法。II、III族金属有机化合物通常为甲基或乙基化合物,如:Ga(CH3)3,In(CH3)3,Al(CH3)3,Ga(C2H5)3,Zn(C2H5)3等,它们大多数是高蒸汽压的液体或固体。用氢气或氮气作为载气,通入液体中携带出蒸汽,与V族的氢化物(如NH3,PH3,AsH3)混合,再通入反应室,在加热的衬底表面发生反应,外延生长化合物晶体薄膜。 MOCVD具有以下优点: 用来生长化合物晶体的各组份和掺杂剂都可以以气态方式通入反应室中,可以通过控制各种气体的流量来控制外延层的组分,导电类型,载流子浓度,厚度等特性。因有抽气装置,反应室中气体流速快,对于异质外延时,反应气体切换很快,可以得到陡峭的界面。 外延发生在加热的衬底的表面上,通过监控衬底的温度可以控制反应过程。 在一定条件下,外延层的生长速度与金属有机源的供应量成正比。MOCVD及相关设备技术发展现状:MOCVD技术自二十世纪六十年代首先提出以来,经过七十至八十年代的发展,九十年代已经成为砷化镓、磷化铟等光电子材料外延片制备的核心生长技术。目前已经在砷化镓、磷化铟等光电子材料生产中得到广泛应用。日本科学家Nakamura将MOCVD应用氮化镓材料制备,利用他自己研制 的MOCVD设备(一种非常特殊的反应室结构),于1994年首先生产出高亮度蓝光和绿光发光二极管,1998年实现了室温下连续激射10,000小时,取得了划时代的进展。到目前为止,MOCVD是制备氮化镓发光二极管和激光器外延片的主流方法,从生长的氮化镓外延片和器件的性能以及生产成本等主要指标来看,还没有其它方法能与之相比。国际上MOCVD设备制造商主要有三家:德国的AIXTRON公司、美国的EMCORE公司(Veeco)、英国的Thomas Swan 公司(目前Thomas Swan公司被AIXTRON公司收购),这三家公司产品的主要区别在于反应室。 这些公司生产MOCVD设备都有较长的历史,但对氮化镓基材料而言,由于材料本身研究时间不长,对材料生长的一些物理化学过程还有待认识,因此目前对适合氮化镓基材料的MOCVD设备还在完善和发展之中。国际上这些设备商也只是1994年以后才开始生产适合氮化镓的MOCVD设备。目前生产氮化镓中最大MOCVD设备一次生长24片(AIXTRON公司产品)。国际上对氮化镓研究得最成功的单位是日本日亚公司和丰田合成,恰恰这些公司不出售氮化镓生产的MOCVD设备。日本酸素公司生产的氮化镓-MOCVD设备性能优良,但该公司的设备只在日本出售。 MOCVD设备的发展趋势:研制大型化的MOCVD设备。为了满足大规模生产的要求,MOCVD设备更大型化。目前一次生产24片2英寸外延片的设备已经有商品出售,以后将会生产更大规模的设备,不过这些设备一般只能生产中低档产品;研制有自己特色的专用MOCVD设备。这些设备一般只能一次生产1片2英寸外延片,但其外延片质量很高。目前高档产品主要由这些设备生产,不过这些设备一般不出售。1)InGaAlP四元系InGaAlP化合物半导体是制造红色和黄色超高亮度发光二极管的最佳材料,InGaAlP外延片制造的LED发光波段处在550650nm之间,这一发光波段范围内,外延层的晶格常数能够与GaAs衬底完善地匹配,这是稳定批量生产超高亮度LED外延材料的重要前提。AlGaInP超高亮度LED采用了MOCVD的外延生长技术和多量子阱结构,波长625nm 附近其外延片的内量子效率可达到100%,已接近极限。目前MOCVD生长InGaAlP外延片技术已相当成熟。InGaAlP外延生长的基本原理是,在一块加热至适当温度的GaAs衬底基片上,气态物质In,Ga,Al,P有控制的输送到GaAs衬底表面,生长出具有特定组分,特定厚度,特定电学和光学参数的半导体薄膜外延材料。III族与V族的源物质分别为TMGa、TEGa、TMIn、TMAl、PH3与AsH3。通过掺Si或掺Te以及掺Mg或掺Zn生长N型与P型薄膜材料。对于InGaAlP薄膜材料生长,所选用的III族元素流量通常为(1-5)10-5克分子,V族元素的流量为(1-2)10-3克分子。为获得合适的长晶速度及优良的晶体结构,衬底旋转速度和长晶温度的优化与匹配至关重要。细致调节生长腔体内的热场分布,将有利于获得均匀分布的组分与厚度,进而提高了外延材料光电性能的一致性。2)lGaInN氮化物半导体是制备白光LED的基石,GaN基LED外延片和芯片技术,是白光LED的核心技术,被称之为半导体照明的发动机。因此,为了获得高质量的LED,降低位错等缺陷密度,提高晶体质量,是半导体照明技术开发的核心。GaN外延片的主要生长方法:GaN外延片产业化方面广泛使用的两步生长法,工艺简述如下:由于GaN和常用的衬底材料的晶格失配度大,为了获得晶体质量较好的GaN外延层,一般采用两步生长工艺。首先在较低的温度下(500600)生长一层很薄的GaN和AIN作为缓冲层,再将温度调整到较高值生长GaN外延层。Akasaki首先以AIN作为缓冲层生长得到了高质量的GaN晶体。AlN能与GaN较好匹配,而和蓝宝石衬底匹配不好,但由于它很薄,低温沉积的无定型性质,会在高温生长GaN外延层时成为结晶体。随后Nakamura发现以GaN为缓冲层可以得到更高质量的GaN晶体。为了得到高质量的外延层,已经提出很多改进的方法,主要如下:常规LEO法 LEO是一种SAE(selective area epitaxy)方法,可追溯到Nishinaga于1988年对LPE(liquid phase epitaxy)的深入研究,LEO常用SiO2 或SiNx作为掩膜(mask),mask平行或者垂直衬底的11-20面而放置于buffer或高温生长的薄膜上,mask的两种取向的侧向生长速率比为1.5,不过一般常选用平行方向(1-100) 。LEO具体生长过程,GaN在窗口区向上生长,当到达掩膜高度时就开始了侧向生长,直到两侧侧向生长的GaN汇合成平整的薄膜。 PE(Pendeo epitaxy)法 1. 衬底上长缓冲层,再长一层高温GaN 2. 选择腐蚀形式周期性的 stripe及trench,stripe 沿(1-100)方向, 侧面为11-203. PE生长,有二种模式。Model A:侧面11-20生长速率大于(0001)面垂直生长速率;Model B:开始(0001)面生长快,紧接着又有从新形成的11-20面的侧面生长。一般生长温度上升,model A可能性增大,有时在同一个PE生长会同时出现两种生长模式,这是由于生长参数的微小波动造成扩散特性的改变,从而也揭示了与生长运动学有关的参数(如平均自由程,平均寿命)相联系的阈值能量很低。PE生长得到的GaN TD密度下降了4-5个个量级,SEM显示侧面生长的GaN汇合处或者是无位错或者是空洞,但在这些空洞上方的GaN仍为无位错区;AFM显示PE生长的 GaN表面粗糙度仅为原子级,相当光滑;实验表明,PE生长比相同结构的LEO生长快4-5倍,且PE GaN的应力比LEO GaN中的小5-10倍。 3)其它新型外延材料ZnO 本身是一种有潜力的发光材料。 ZnO的禁带宽度为3.37eV,属直接带隙,和GaN、SiC、金刚石等宽禁带半导体材料相比,它在380nm附近紫光波段发展潜力最大,是高效紫光发光器件、低阈值紫光半导体激光器的候选材料。这是因为,ZnO的激子束缚能高达60meV,比其他半导体材料高得多(GaN为26meV),因而具有比其他材料更高的发光效率。ZnO材料的生长非常安全,既没有GaAs那样采用毒性很高的砷烷为原材料,也没有GaN那样采用毒性较小的氨气为原材料,而可以采用没有任何毒性的水为氧源,用有机金属锌为锌源。因而,今后ZnO材料的生产是真正意义上的绿色生产,完全复合环保要求。生长ZnO 的原材料锌和水资源丰富、价格便宜,有利于大规模生产和持续发展。目前,ZnO半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料质量达不到器件水平和P型掺杂问题没有真正解决,适合ZnO基半导体材料生长的设备尚未研制成功,这为我国发展ZnO半导体材料和器件、实现技术上的跨越,提供了一次极好的发展机遇。ZnSe材料的白光LED也是一种有潜力的白光LED技术。其技术是先在ZnSe单晶基底上生长一层CdZnSe薄膜,通电后该薄膜发出的蓝光与基板ZnSe作用发出互补的黄光,从而形成白光光源。GaNAs和GaNP材料目前正处于刚开始研究阶段,但作为一种有潜力的发光材料,国家在基础研究方面应给予重视。 4)外延技术发展趋势:改进两步法生长工艺目前商业化生产采用的是两步生长工艺,但一次可装入衬底数有限,6片机比较成熟,20片左右的机台还在成熟中,片数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论