已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学圆的有关性质解答题(3)16. (2014黑龙江绥化,第22题6分)如图,AB是O的直径,弦CDAB于点E,点P在O上,1=BCD(1)求证:CBPD;(2)若BC=3,sinBPD=,求O的直径考点:圆周角定理;垂径定理;解直角三角形分析:(1)根据圆周角定理和已知求出D=BCD,根据平行线的判定推出即可;(2)根据垂径定理求出弧BC=弧BD,推出A=P,解直角三角形求出即可解答:(1)证明:D=1,1=BCD,D=BCD,CBPD;(2)解:连接AC,AB是O的直径,ACB=90,CDAB,弧BD=弧BC,BPD=CAB,sinCAB=sinBPD=,即=,BC=3,AB=5,即O的直径是5点评:本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力17. (2014黔南州,第24题10分)如图,AB是O的直径,弦CDAB于点G,点F是CD上一点,且满足=,连接AF并延长交O于点E,连接AD、DE,若CF=2,AF=3(1)求证:ADFAED;(2)求FG的长;(3)求证:tanE=考点:相似三角形的判定与性质;垂径定理;圆周角定理;解直角三角形分析:由AB是O的直径,弦CDAB,根据垂径定理可得:弧AD=弧AC,DG=CG,继而证得ADFAED;由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;由勾股定理可求得AG的长,即可求得tanADF的值,继而求得tanE=解答:解:AB是O的直径,弦CDAB,DG=CG,弧AD=弧AC,ADF=AED,FAD=DAE(公共角),ADFAED;=,CF=2,FD=6,CD=DF+CF=8,CG=DG=4,FG=CGCF=2;AF=3,FG=2,AF=3,FG=2,AG=,tanE=点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识此题综合性较强,难度适中,注意掌握数形结合思想的应用18(2014攀枝花,第23题12分)如图,以点P(1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将ABC绕点P旋转180,得到MCB(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EGBC于G,连接MQ、QG请问在旋转过程中MQG的大小是否变化?若不变,求出MQG的度数;若变化,请说明理由考点:圆的综合题分析:(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MHBC,垂足为H,易证MHPAOP,从而求出MH、OH的长,进而得到点M的坐标(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到MQG=2MBG易得OCA=60,从而得到MBG=60,进而得到MQG=120,所以MQG是定值解答:解:(1)连接PA,如图1所示POAD,AO=DOAD=2,OA=点P坐标为(1,0),OP=1PA=2BP=CP=2B(3,0),C(1,0)(2)连接AP,延长AP交P于点M,连接MB、MC如图2所示,线段MB、MC即为所求作四边形ACMB是矩形理由如下:MCB由ABC绕点P旋转180所得,四边形ACMB是平行四边形BC是P的直径,CAB=90平行四边形ACMB是矩形过点M作MHBC,垂足为H,如图2所示在MHP和AOP中,MHP=AOP,HPM=OPA,MP=AP,MHPAOPMH=OA=,PH=PO=1OH=2点M的坐标为(2,)(3)在旋转过程中MQG的大小不变四边形ACMB是矩形,BMC=90EGBO,BGE=90BMC=BGE=90点Q是BE的中点,QM=QE=QB=QG点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示MQG=2MBGCOA=90,OC=1,OA=,tanOCA=OCA=60MBC=BCA=60MQG=120在旋转过程中MQG的大小不变,始终等于120点评:本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键19(2014湖北黄石,第19题7分)如图,A、B是圆O上的两点,AOB=120,C是AB弧的中点(1)求证:AB平分OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长第3题图考点:菱形的判定与性质;等边三角形的判定与性质;圆心角、弧、弦的关系;圆周角定理分析:(1)求出等边三角形AOC和等边三角形OBC,推出OA=OB=BC=AC,即可得出答案;(2)求出AC=OA=AP,求出PCO=90,P=30,即可求出答案解答:(1)证明:连接OC,AOB=120,C是AB弧的中点,AOC=BOC=60,OA=OC,ACO是等边三角形,OA=AC,同理OB=BC,OA=AC=BC=OB,四边形AOBC是菱形,AB平分OAC;(2)解:连接OC,C为弧AB中点,AOB=120,AOC=60,OA=OC,OAC是等边三角形,OA=AC,AP=AC,APC=30,OPC是直角三角形,点评:本题考查了圆心角、弧、弦之间的关系,勾股定理,等边三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中20(2014河北,第25题11分)图1和图2中,优弧所在O的半径为2,AB=2点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A(1)点O到弦AB的距离是1,当BP经过点O时,ABA=60;(2)当BA与O相切时,如图2,求折痕的长:(3)若线段BA与优弧只有一个公共点B,设ABP=确定的取值范围考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出ABA(2)根据切线的性质得到OBA=90,从而得到ABA=120,就可求出ABP,进而求出OBP=30过点O作OGBP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长(3)根据点A的位置不同,分点A在O内和O外两种情况进行讨论点A在O内时,线段BA与优弧都只有一个公共点B,的范围是030;当点A在O的外部时,从BA与O相切开始,以后线段BA与优弧都只有一个公共点B,的范围是60120从而得到:线段BA与优弧只有一个公共点B时,的取值范围是030或60120解答:解:(1)过点O作OHAB,垂足为H,连接OB,如图1所示OHAB,AB=2,AH=BH=OB=2,OH=1点O到AB的距离为1当BP经过点O时,如图1所示OH=1,OB=2,OHAB,sinOBH=OBH=30由折叠可得:ABP=ABP=30ABA=60故答案为:1、60(2)过点O作OGBP,垂足为G,如图2所示BA与O相切,OBABOBA=90OBH=30,ABA=120ABP=ABP=60OBP=30OG=OB=1BG=OGBP,BG=PG=BP=2折痕的长为2(3)若线段BA与优弧只有一个公共点B,当点A在O的内部时,此时的范围是030当点A在O的外部时,此时的范围是60120综上所述:线段BA与优弧只有一个公共点B时,的取值范围是030或60120点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求的取值范围,有一定的综合性第(3)题中的范围可能考虑不够全面,需要注意21. (2014上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G(1)当圆C经过点A时,求CP的长;(2)联结AP,当APCG时,求弦EF的长;(3)当AGE是等腰三角形时,求圆C的半径长考点:圆的综合题分析:(1)当点A在C上时,点E和点A重合,过点A作AHBC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)当AEG=B时,A、E、G重合,只能AGE=AEG,利用ADBC,得出GAEGBC,进而求出即可解答:解:(1)如图1,设O的半径为r,当点A在C上时,点E和点A重合,过点A作AHBC于H,BH=ABcosB=4,AH=3,CH=4,AC=5,此时CP=r=5;(2)如图2,若APCE,APCE为平行四边形,CE=CP,四边形APCE是菱形,连接AC、EP,则ACEP,AM=CM=,由(1)知,AB=AC,则ACB=B,CP=CE=,EF=2=;(3)如图3:过点C作CNAD于点N,cosB=,B4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年常年合同制员工聘用合同范本
- 中秋晚会时间管理
- 中建集团新员工入职培训
- 学校年度述职报告
- 要事第一时间管理
- 行政管理专业招生
- 2025家庭护理服务合同
- 幼儿园通识培训
- 中国梦实干精神终端门店日常管理
- 外贸培训核心要点精要
- 2025-2026华为ICT大赛-昇腾AI赛道理论考试题库(核心500题)
- 上海购房合同(标准版)
- 110千伏变电站设计项目技术方案
- 2025年消防安全知识培训考试试题及答案
- 2025年青海省公务员申论考试真题试卷(含答案)
- 文旅产业知识培训课件
- 协助患者更衣课件
- 公司法学(第五版) 课件全套 赵旭东 第1-15章 公司与公司法-外国公司的分支机构
- 2025年体育常识考试试题及答案
- 企业人力资源数字化管理平台方案
- 2025年广东铁投集团校园招聘笔试参考题库附带答案详解
评论
0/150
提交评论