




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数列方法与解题技巧一、数列求通项的10种方法二、数列求和的7种方法三、6道四川高考数列大题及详解数列求通项的10种方法一、公式法例1 已知数列满足,求数列的通项公式.方法:等式两边同时除以 ,构造成等差数列,利用等差数列公式求解。形式: 项系数与后面所加项底数相同二、累加法例2 已知数列满足,求数列的通项公式.方法: 将上述各式累加,中间式子首尾项相抵可求得 形式:; 要求、的系数均为1,对于不为1时,需除以系数化为1。例3 已知数列满足,求数列的通项公式.方法:同例2例4 已知数列满足,求数列的通项公式.方法:等式的两边同除以3,将 系数化为1,再用累加法。三、累乘法例5 已知数列满足,求数列的通项公式.。方法: 将上述各式累乘,消除中间各项,可求得形式:; 的关于n的倍数关系。例6 已知数列满足,求的通项公式.方法:本题与例5不同之处是想要通过错位相减法,求出 的递推关系,然后才能用累成法求。四、待定系数法(X,Y,Z法)例7 已知数列满足,求数列的通项公式.方法:构造数列。形式: 例8 已知数列满足,求数列的通项公式.方法:构造数列 ,本题中递推关系中含常数4,对于常数项,可看成是 。对于不同形式的n要设不同的参数。例9 已知数列满足,求数列的通项公式.方法:同例8,但它的参数要设3个。五、对数变换法例10 已知数列满足,求数列的通项公式.方法:等式两边同取对数得到 ,然后可利用待定系数法或者累加法求之。形式: ,其中对与的高次方特别有效。六、迭代法例11 已知数列满足,求数列的通项公式.方法:按照数列对应函数关系,由 逐层加上去,直到推到 为止。形式: 七、数学归纳法例12 已知数列满足,求数列的通项公式.方法:演算 的前4项,猜测、发现项数n与项值之间的关系,然后证明猜测的正确性。形式:对于形式比较繁复,无从下手时,可以考虑用数归法去大胆猜测。八、换元法例13 已知数列满足,求数列的通项公式.方法:令 ,可将数列递推关系转化为数列 的递推关系。从而去掉 ,实现有理化或者整式化。形式: 九、不动点法例14 已知数列满足,求数列的通项公式.方法:求函数 ,两个自变量与对应函数相等时的值,解得 。即存在k使得 ,由此可构成新的等比数列 形式: ,且对应函数有两个不同的解。例15 已知数列满足,求数列的通项公式.方法:本题对应函数的解相等,为1,所以不能用不动点法,只能才用数归法做。十、阶差法(逐项相减法) 例16 已知数列的各项均为正数,且前n项和满足,且成等比数列,求数列的通项公式.方法:由 推出 的递推关系,然后再求数列的通项。形式: 练习 已知数列中, 且,求数列的通项公式.数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、等比数列求和公式:3、 4、5、例1 已知,求的前n项和.例2 设Sn1+2+3+n,nN*,求的最大值. 二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中 an 、 bn 分别是等差数列和等比数列.例3 求和:例4 求数列前n项的和.三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.例5 求证:例6 求的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例7 求数列的前n项和:,例8 求数列n(n+1)(2n+1)的前n项和. 五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1) (2)(3) (4)(5)(6) 例9 求数列的前n项和.例10 在数列an中,又,求数列bn的前n项的和.例11 求证: 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn. 例12 求cos1+ cos2+ cos3+ cos178+ cos179的值.例13 数列an:,求S2002.例14 在各项均为正数的等比数列中,若的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.例15 求之和.例16 已知数列an:的值.四川高考理科数学试题2008年-2013年数列解答题(2008年四川高考理科20题)设数列的前项和为,已知()证明:当时,是等比数列;()求的通项公式(2009年四川高考理科20题)设数列的前项和为,对任意的正整数,都有成立,记。(I)求数列的通项公式;(II)记,设数列的前项和为,求证:对任意正整数都有;(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。(2010年四川高考理科20题)已知数列an满足a10,a22,且对任意m、nN*都有a2m1a2n12amn12(mn)2()求a3,a5;()设bna2n1a2n1(nN*),证明:bn是等差数列;()设cn(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn.(2011年四川高考理科20题)设为非零实数,(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;(II)设,求数列的前n项和(2012年四川高考理科20题)(本小题满分12分) 已知数列的前项和为,且对一切正整数都成立.()求,的值;()设,数列的前项和为,当为何值时,最大?并求出的最大值.(2013年四川高考理科16题)在等差数列中,且为和的等比中项,求数列的首项,公差及前项和。四川高考理科数学试题(数列)答案(2008年四川高考理科20题)解:由题意知,且,两式相减得,即 ()当时,由知于是又,所以是首项为1,公比为2的等比数列。()当时,由()知,即 当时,由由得因此得4(2009年四川高考理科20题)解:()当时,又 ,数列成等比数列,其首项,公比是.3分()由()知 = , 又当当()由()知一方面,已知恒成立,取n为大于1的奇数时,设则对一切大于1的奇数n恒成立只对满足的正奇数n成立,矛盾。另一方面,当时,对一切的正整数n都有事实上,对任意的正整数k,有 当n为偶数时,设则当n为奇数时,设则0时,由(I)知,当 , (2+)an-1=S2+S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训教务工作素材内容课件
- 2025春季上海建工集团校园招聘正式启动考前自测高频考点模拟试题有答案详解
- 2025北京市延庆区教育委员会第二批招聘教师87人考前自测高频考点模拟试题含答案详解
- 2025福建亿力集团有限公司所属单位生招聘98人第三批模拟试卷及参考答案详解一套
- 茶田茶叶的订购合同5篇
- H3R-antagonist-6-生命科学试剂-MCE
- 2025年甘肃省临夏州临夏德雅高级中学春季教师招聘19人模拟试卷及答案详解1套
- 广度安全培训课件
- 2025年合肥高新美城物业有限公司招聘21人考前自测高频考点模拟试题及完整答案详解
- 工程验收合同示例
- 人教版五年级上册数学第二单元测试卷(含答案)
- 国资委考试试题及答案
- 2025-2030中国铝合金门窗行业发展分析及投资前景与战略规划研究报告
- 粉刷石膏合同协议
- 电力工程项目中八大员的具体职责
- 学员游泳培训合同协议
- 纪念九·一八:致敬那场永不妥协的抗争-主题班会课件
- 2025年周年热点大事件复习课件-【知识精讲精研】高三历史统编版(2019)二轮复习
- 【道法】做自强不息的中国人课件+-2024-2025学年统编版道德与法治七年级下册
- 老年人高血压健康知识
- 水泥电杆行业分析报告
评论
0/150
提交评论