




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学第一轮复习 -函数概念与表示一教材分析:函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。 /view/72edea4d767f5acfa1c7cdfa.html高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。预测2012年高考对本节的考察是:1题型是1个选择和一个填空;2热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。/mainland/wodesangemuqin/二教学目标:1通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念;2在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3通过具体实例,了解简单的分段函数,并能简单应用;4通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;5学会运用函数图象理解和研究函数的性质。三教学方法:新课标指出:“学生个性化行为,不应以教师的分析来代替学生的综合实践。”本课采用个性化教学,以学生原有的知识经验为基础展开教学,通过创设情境,激发学生的学习兴趣,引领学生自学自悟。设计充分尊重学生独特的感受、体验和理解,让学生自己对教学内容领悟取代教材的讲解分析,让学生自己的独立思考取代统一答案,让学生自己的感性体验取代整齐划一的理解指导,整个过程为张扬学生个性,激发学生灵性服务。四教学过程:1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数。记作:y=f(x),xA。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域。注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。2构成函数的三要素:定义域、对应关系和值域/question/356753987.html(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。配方法(将函数转化为二次函数);判别式法(将函数转化为二次方程);不等式法(运用不等式的各种性质);函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。3两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。4区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。5映射的概念/webshowe.asp?s=一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的其中f表示具体的对应法则,可以用汉字叙述。(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。6常用的函数表示法/view/fcae9932b90d6c85ec3ac6c6.html(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。7分段函数/programs/view/OO0bCV0lUrA/?fr=rec1若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8复合函数若y=f(u),u=g(x),x(a,b),u(m,n),那么y=fg(x)称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。五典例解析题型1:函数概念例1(1)设函数(2)(2001上海理,1)设函数f(x),则满足f(x)=的x值为 。解:(1)这是分段函数与复合函数式的变换问题,需要反复进行数值代换, = =(2)当x(,1,值域应为,当x(1,)时值域应为(0,),y,y(0,),此时x(1,),log81x,x813。点评:讨论了函数的解析式的一些常用的变换技巧(赋值、变量代换、换元等等),这都是函数学习的常用基本功。变式题:(2011山东 文2)设( )A0 B1 C2 D3解:选项为C。点评:通过对抽象函数的限制条件,变量换元得到函数解析式,考察学生的逻辑思维能力。题型二:函数定义域问题例2求下述函数的定义域:(1);(2)解:(1),解得函数定义域为.(2) ,(先对a进行分类讨论,然后对k进行分类讨论),当a=0时,函数定义域为;当时,得,1)当时,函数定义域为,2)当时,函数定义域为,3)当时,函数定义域为;当时,得,1)当时,函数定义域为,2)当时,函数定义域为,3)当时,函数定义域为。点评:在这里只需要根据解析式有意义,列出不等式,但第(2)小题的解析式中含有参数,要对参数的取值进行讨论,考察学生分类讨论的能力。/webshowe.asp?s=题型三:函数值域问题例3求下列函数的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9)。解:(1)(配方法),的值域为。改题:求函数,的值域。解:(利用函数的单调性)函数在上单调增,当时,原函数有最小值为;当时,原函数有最大值为。函数,的值域为。(2)求复合函数的值域:设(),则原函数可化为。又,故,的值域为。(3)(法一)反函数法:的反函数为,其定义域为,原函数的值域为。(法二)分离变量法:,函数的值域为。(4)换元法(代数换元法):设,则,原函数可化为,原函数值域为。注:总结型值域,变形:或(5)三角换元法:,设,则,原函数的值域为。(6)数形结合法:,函数值域为。(7)判别式法:恒成立,函数的定义域为。由得: 当即时,即,当即时,时方程恒有实根,且,原函数的值域为。(8),当且仅当时,即时等号成立。,原函数的值域为。点评:上面讨论了用初等方法求函数值域的一些常见类型与方法,在现行的中学数学要求中,求值域要求不高,要求较高的是求函数的最大与最小值,在后面的复习中要作详尽的讨论。/s?cl=3&wd=%CB%D5%E9%F8/view/72edea4d767f5acfa1c7cdfa.html/programs/view/OO0bCV0lUrA/?fr=rec1/.01052316543387250.mp3更多热门歌曲 六教学反思:“函数”是数学中最重要的概念之一,学习函数的概念首先要掌握函数三要素的基本内容与方法。由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围它依赖于对各种式的认识与解不等式技能的熟练。:8098/.134747758.mp3更多热门歌曲1求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等。2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域:掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;若已知的定义域,其复合函数的定义域应由解出。3求函数值域的各种方法/mainland/wodesangemuqin/函数的值域是由其对应法则和定义域共同决定的。其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域。直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a0时,值域为;当a0时,值域为。配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;分式转化法(或改为“分离常数法”)换元法:通过变量代换转化为能求值域的函数,化归思想;三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;基本不等式法:转化成型如:,利用平均值不等式公式来求值域;单调性法:函数为单调函数,可根据函数的单调性求值域。数形结合:根据函数的几何图形,利用数型结合的方法来求值域。教师个人介绍省份:江苏省 学校:灌云县第一中学 姓名:胡亮电子邮件:hu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塔吊安装与操作方案
- 长沙校园安全教育网
- 校园安全教育逐字稿范文
- 燃气工程跨部门协作方案
- 校园交通安全教育广播
- 土壤酸化耕地生态恢复方案
- 政治中考试题及参考答案
- 工业园区绿色供电项目施工组织方案
- 镇江高专去年考试题目及答案
- 离婚协议子女抚养与探视权执行细则及财产补偿
- T-CACM 1560.1-2023 中医养生保健服务(非医疗)技术操作规范推拿
- 护理美学-第三章 护士审美修养
- 篮球教学活动设计方案
- (高清版)JTG 5211-2024 农村公路技术状况评定标准
- 人教精通版6年级上下册重点单词和句型默写
- 大学生生涯发展展示 (修改版)
- DB32T4062-2021城市轨道交通工程质量验收统一标准
- (正式版)JBT 14897-2024 起重磁铁安全技术规范
- 三D打印公开课
- 西方节日-英文介绍
- 动车组列车员(长)(职业通用)全套教学课件
评论
0/150
提交评论