钣金成形性能.doc_第1页
钣金成形性能.doc_第2页
钣金成形性能.doc_第3页
钣金成形性能.doc_第4页
钣金成形性能.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

钣 金 成 形 性 能 一 概论1 .钣金成形性能研究课题的范围和性质 金属变形的两个明显不同的范畴,弹性与塑性。金属成形,必须在塑性范围内进行,才可以得到永久变形,其定义不像弹性那样精确,然而也有一些解析方法和试验结果,并诞生了塑性理论。钣金成形必须超过弹性极限,但不应超过缩颈阶段,因为超过缩颈阶段,特别是出现局部缩颈后纵然可以得到所要求的形状,但在后续成型工序及使用中横容易招致破坏。 所以研究的范围主要是限于弹性极限到局部缩颈点之间的塑性区。对象限与3mm以内的薄板料1) 应力与应变虽然是一个统一体的两面,但用塑性理论解决问题时,主要是考虑受力及应力状态,故叫塑性力学。成形性能主要考虑变形及应变形态,尤其是最大的极限变形状态。2) 由于以上关系,塑性理论解决问题必用的平衡方程,考虑成形性能时就不见得用到,因为成形性能主要考虑变形的过程及结果,不是某一个平衡状态。体积不变条件,是这方面唯一经常用到的条件3) 工艺参数如极限压延比,是一种工艺的综合极限指标,成形性能考虑的是各个局部的(极限)变形,两者既有联系,又有区别。2 .钣金成形性能研究的内容和问题 1)材料加工性能和钣金的成形性能 实践证明,改善材料的加工性能,常常比改进加工方法本身能收到更大的经济效益。图1-2所以,为一个钣金在整个生产过程中,希望能具备的各种加工性能。 钣金加工阶段所需要的加工性能,可叫做冲压性,一般包括冲剪性,成形性和定性性三个方面。 冲剪性是指板材适应冲裁与剪裁加工的能力。80% 90%钣金件的毛料是经冲剪提供的 成形性是指板材适应各种成形加工的能力。大多数钣金零件都需要成形工序,使平板毛料变成具有一定形状的零件。 定形性是指在成形外力卸去后,板料保持其已得形状的能力。由于塑性变形中总包含有弹性分量,外力卸除时,已成形的板料会产生一定的回弹。由于回弹的互相牵制,还会出现残余应力,零件在储存和使用期间,这些残余应力还可能引起零件变形和开裂。 在上述三个方面中,成形性国外研究得最早,最多,也最有实际效果,故我们也首先抓成形性的研究。 按材料在成形过程中所承受的变形方式来分类,一般可分为:(1) 弯曲成形(包括拉弯)(2) 压延成形(3) 胀形(还包括拉形、局部成形)(4) 拉深成形(包括单向拉深、翻孔、凹弧翻边等)(5) 收缩成形(包括收边、管子缩颈、收口、凸翻边等)。(6) 体积成形(包括旋薄、变薄压延、喷丸成形、压印等) 当前所谓板料的成形性,一般是指板料对前四类成形方法的适应能力。剧统计,形状复杂,成形难度较大的钣金件,绝大多数属于压延或胀形,或这两者不同的复合成形。成形性中最为重要的是成形极限的大小。钣金在成形过程中存在两种成形极限,一是起皱,另一是破裂。成形极限可以用“发生起皱或破裂之前,材料能承受的最大变形程度”来表示。薄钣金很容易起皱,对应不起皱的允许变形程度常常很小。在实际生产中,起皱可用压边圈(或类似的机械夹持)等方法来预防,故起主导作用的的极限经常是破裂。材料的破裂是在受拉的情况下,经过弹性变形均匀塑性变形分散性失稳集中性失稳几个阶段才发生的。故在成形性研究中,板料抵抗拉伸失稳的能力,是个重要的内容。对汽车钣金来讲,更换材料遇到最大的困难就是成形性的问题。下面是日本冶金公司对他们的几百中钢、铝、铜等薄板提供六个方面15项成形性能方面的数据,供订货者选择。A 板厚B 单向拉深试验的数据 抗拉强度b 屈服点 s 屈服比s / b 极限伸长率p 均匀伸长率 应变刚指数n值 厚向异性系数值 平面异性系数值C 弯曲试验的数据R/t(弯曲内半径与厚度比,弯角180)D 硬度试验的数据硬度值E 成形试验的数据 埃利克森值IE(A),IE(B) 斯威弗特压延比值L.D.R(或k) 福井试验值C.C.VF 显微组织试验的数据晶粒度2)成形性能研究的问题成形性能中最为重要的是成形极限的大小。成形极限可理解成为钣金在发生破裂前能够得到的变形程度,也就是我们说的“塑性”。塑性不是金属的本性,而是金属的一种状态。一种金属的塑性大小,不仅与其成分、组织有关,还与下列因素有关: 变形方式材料在变形过程中所受的应力应变状态 变形条件变形温度、速度、外摩擦等条件 变形经历(变形历史) 附近材料的应变剃度再者,在具体生产中,一种牌号钣金的塑性,还与以下具体生产条件有关 尺寸效应(因尺寸的增大或缩小而引起的成形性差别) 边缘状况 模具参数 机床工作参数 摩擦润滑情况 工人操作情况故同一种牌号的钣金,即使对同一种成形方式,因具体生产条件不同,其适应能力还可能不同,因此评定一重钣金成形性能的指数,如要求能与各种具体生产工艺参数定量地相对应,则非常的繁琐,指数过分繁多了,就失去评定的意义。但如评定的指数过少,则将有很多因素的影响不能得到反映。用尽量少的指数,把各种主要因素的影响都包括进去。此外,钣金的成形性能在成形过程中,还是随变形程度的增加而变化的,需要找到变化的规律,并统一规定用多大变形程度的成形性能指数,来代表材料的成形性能。所以,钣金成形性能研究的问题可概括为“四多一变”。即零件形状多,成形方法多,材料牌号多,影响因素多,而且一种牌号材料成形性能,在成形过程中还是变化的。 3.鉴定钣金成形性能的指数与试验 1)概述 基本成形性能指数及试验 模拟成形性能指数及试验 成形性能曲线及试验 特定成形性能指数及试验 金属学的成形性能指数及试验 A 基本成形性能指数及其试验. 单拉试验求得的成形性能相关指数从单拉试验求得的使用性能数据,可找到下述与成形性相关的定性关系: 屈服点s和抗拉强度b高,所需要的成形力大 屈强比s/b小或屈强差b-s大,成形性好 均匀伸长率B大,极限伸长率p大,强度与伸长率乘积bp大,屈强差与均匀伸长率乘积(b-s)B大,成形性好; s/E小,回弹小; 屈服点伸长率Y.P大,零件的表面目视质量差。材料按假象应力应变关系曲线的形状分有两种类型。第一类材料没有明显的屈服点,一般用0.2%永久伸长时应力0.2作为屈服强度。第二类材料有不连续的屈服现象,当屈服时有一段应力上下波动的应变区,这个应变区的长度叫屈服点伸长Y.P。第二类材料成形经过屈服时,材料表面会产生目视可见的滑移线(Luders lines)滑移线十分明显时,零件表面将会不平滑,即使不太明显,零件的外观亦会受到严重损害。这种不连续屈服现象最易在退火状态的冷扎钢板中产生。Y.P值往往达百分之几,其机理是钢中的固溶碳和氮与位错的相互作用。对退火钢板施以轻度调质扎制,可增加材料中的动位错,从而消除不连续屈服现象。但固溶氮和碳随时间延长而发生的扩散聚集,会使增加的这些动位错又重新被固定下来,这种现象叫应变时效。. 单向拉伸求得的成形性能特定指数 60年代以来,研究工作的重大成就之一,是证明了:通过单拉试验求得的下述指数,能够令人满意的表明钣金成形性能的好坏。 厚向异性指数r值 应变强化指数n值,又叫应变刚指数 应变速率敏感指数m值,又叫应变速率强化指数如变形不是在室温条件下进行,变形温度对材料的塑性变形有重要影响。更全面的看,材料单拉实际应力曲线应采用如下形式表示: 其中=,叫实际应变的应变速率,T为绝对温度()。在室温常速条件下,m=0,则实际应力曲线可表示为: 在变形温度高于0.5时,将没有应变强化,即n=0,则实际应力曲线可表示为: 可知 因而m值可定义为:单拉试验中,变形抗力增长率对应变速度增长率的比值。有两种测量m值方法。第一种方法(图a)是用两个不同的试件以不同的应变速率进行拉伸(),由实际应力应变曲线计算m值: 用这个方法的缺点是,由于两个试件的热效应不同,试验条件是不同的。比较好的用图b所示的方法;这是在拉伸试验中,试验机的活动头原以速度运动,然后跳到另一个速度。在每个速度都有其相应的载荷和,而后可以用下式计算m值: 当试件某局部有出现细颈的趋势时,该处的应变速率将急剧增大,如果材料的m值大,则该处的变形抗力也将急剧增大,从而将变形转移到抗力尚低的区域去,阻止拉伸失稳(局部缩颈)的发生,故提高了材料的延伸性能。我们把m值大的材料,叫超塑性材料,对于有面心立方晶格的金属,m0;对于体心立方晶格,m0.005;对于超塑性金属,m0.6;对于聚已烯,m1。故m值在热成形中具有重要的意义,但对于常温常速成形,m值没有什么重要意义。m除用在高温成形外,由于m是应变速率强化指数,也是确定动力屈服强度的指数,在高速变形中,也有实际意义;例如对于汽车车身壁板,用指数m高的钣金,可以提高抗冲击强度和不容易发生冲击凹坑的缺陷。拉伸试件,变形速度的变化及其效应,可作如下的理解:拉伸试件在开始(即扩散)缩颈中,只在缩颈区变形。设L为缩颈前的试件总长度,是缩颈部分的长度,是试验机所加的延伸速度,则应变速度为:在缩颈前: 在缩颈后: 得 该比值在缩颈开始时较大,由于缩颈区的应变速度有较大的增加,增加了这部分继续变形的抵抗力,这说明为什么缩颈开始时在较大的范围内进行,即所谓扩散缩颈,最后才集中在局部进行,即所谓局部缩颈。在高温下,这种扩散性缩颈作用扩散到整个试件,范围广,时间长,出现所谓超塑性现象。以上拉伸试验得到的各种参数与成形性能的关系,如下表 . 硬度试验求得的硬度值一般来说,材料的硬度越大,其成形性越差,但没有什么定量的联系,而且还有很多例外。故硬度只能用来在同种钣金之间,作成形性能相对好坏的比较。而不能用在不同种类的材料之间作比较。硬度一般是用压痕试验来确定的。常用的有 维氏硬度HV 式中 P所加载荷(N) d永久压痕对角线长度(mm) 布氏硬度 HB 式中 P所加载荷(N) D钢球直径(mm) d压痕直径(mm) 洛氏硬度 HR它是通过测定小载荷下时的压小深度和大载荷压下深度之差,来表示硬度。较软的材料用B标度HRB,较硬的材料用C标度HRCB. 模拟成形性能指数及其试验它是在相似的条件下,以小尺寸的典型零件来模拟某一类成形方法的变形方式(材料在变形过程中所承受的应力应变状态),由实验求得的某种钣金在这类成形方法下的极限变形程度,以次作为评定该种钣金对这类成形方法适应能力的指数。由于考虑了变形方式这一重要因素,因此模拟成形性能比基本成形性能指数更能直接而较准确的说明某种钣金对某类成形方法的成形性能。但模拟实验与实际生产之间,在变形条件,变形历史,应变剃度,尺寸效应和边缘状况等方面未能全都保证相似,故所求得的极限成形参数,用作材料成形性能好坏的相对比较是可以的,但要作为指导实际生产的具体数据需要仔细修正。C. 成形极限曲线及其试验模拟试验只能模拟几种典型的变形方式,实际生产中变形方式的种类很多,尤其是复杂形状的钣金件上,每一点的变形方式都可能不同,是不可能一一模拟的,但是在任何“拉-拉”的应力状态的变形方式下,都是以拉裂来表示钣金的成形极限,把各种“拉-拉”应力状态下的成形极限点联成线,就是材料的成形极限曲线(FLC或FLD)。FLC位置的高低,反映了材料在各种拉-拉应力状态下局部极限变形能力的大小。虽然在实际生产中很多成形方式不都是拉-拉应力状态,但是真正对成形起限制作用的危险区内,材料所处的变形方式仍是拉-拉应力状态。故FLC位置的高低,可作为材料成形性能好坏的重要指标。D. 金属学的成形性能指数及其试验板料的成形性能,虽然受到宏观的变形方式和变形条件的重大影响,但材料本身的微观组织在变形过程中的变化,则能更本质的决定板料的成形性能。目前评判钣金成形性能好坏的金属学方面的指数有: 晶粒大小晶粒大小可用ASTM的晶粒度级别N表示,如截面积上的晶粒数为n,则 即N值愈大,表示晶粒愈细。N5的钢(即内有256个以上的晶粒)就叫细晶粒钢。对于冷扎钢板,晶粒度N应适当小(晶粒适当粗大),成形性能才好。 表面粗糙度常用的Kobayashi R值 。沿着板内较大主应变的方向连续测8mm宽,最高和最底线间的最大距离叫R值,以m计。实践表明,过分粗糙的表面,摩擦力大,并易于生产应力集中,对成形不利。但是过分光滑的表面,使润滑剂容易被模具挤走,也使摩擦力增大,并易于发生金属间的粘贴,对成形性不利。适当粗糙的表面可使润滑剂储存在表面的微谷中;这些微谷还可把断屑或杂物收存起来,从而减少对零件表面的刮伤。板料的其它表面质量,如划伤,擦伤、分层、气泡等,都会使板料在成形时提前发生破裂,因而都会降低板料的成形性能。E. 特定成形性能指数及其试验 凸耳试验(Earing Test)及其指数凸耳反映板面内材料的各向异性(即r值)。用圆形毛料压延平底杯形件时,由于板面内材料有各向异性,杯口会带有几个吐耳。凸耳试验的指数有凸耳的方位,个数和平均耳高E。Siebel建议用下式定义E: 从杯底到凸耳顶峰的平均高度从杯底到凸耳谷底的平均高度由于凸耳值能灵敏反映材料平面各向异性的大小,而板材的平面各向异性值(r值)又能集中而灵敏的反映板料成分、熔炼、扎制和热处理规范等变化的影响,故凸耳值可以作为一个评判板材成形性能是否稳定的重要参数。如凸耳值是稳定的,说明其它各种成形性能指数也大致是稳定的。厚向异性系数r高时,常会有高的r值,对于低碳钢,这就增加了凸耳高度,减小了压延件的有效高度。下图是三种材料凸耳高度和r/r比值的关系曲线,凸耳高度还随压延比(毛料直径与圆杯直径之比)的增加而增加。变薄压延由于能改变沿环向的厚度变化剃度,故有减小凸耳高度的作用。右图是模具间隙与凸耳高度的关系。组织无填隙(interstitial-free)的钢,磷化沸腾钢和铜含量高的钢,与纹路成45的方向有高的厚向异性系数(r45),因而提高了r值,降低了r值和凸耳高度。 下陷成形试验(Joggle Test)及指数将角材或薄壁挤压型材,在某局部突然下折一定距离,谓之下陷成形,这种成形在飞机制造中经常遇到。以不出现破裂和起皱的(h/l)max值作为成形性能指数。h和l是下陷的深度和长度。成形性能试验方法成形性能指数拉胀性能单向拉伸试验液压胀形试验埃利克森试验纯拉胀试验应变刚指数n均匀延伸率lB极限延伸率lP应变刚指数n2破裂处的厚向应变tf胀形系数ke最大胀形高度hmax(mm)埃利克森值IE(mm)极限胀出高度(mm)压延性能单向拉伸试验液压胀形试验压延试验恩格哈梯试验厚向异性指数r值宽度收缩应变加工硬化各向异性指数值极限压延比L.D.R.(用平底凸模)G值Engelhardt T值压延胀形复 合成形性能单向拉伸试验锥杯试验压延试验nr值n值锥杯值C.C.V.(mm)L.D.R.(用球底凸模)极限成形高度hmax(mm)扩孔性能单向拉伸试验液压胀形试验扩孔试验极限变形能fn值lb ;GlPn2值破裂处厚向应变tfK.W.I.值弯曲性能弯曲试验Rmin/t值板面内各向异性单向拉伸试验凸耳试验锥杯试验 r值平均凸耳高E值外径的比较表面恶化性单向拉伸试验埃利克森试验液压胀形试验屈服现象,拉伸滑移,表面粗糙表面粗糙,拉伸滑移表面粗糙定形性单向拉伸试验实物试验弹性模量E,S/E屈服比S/b ,r值成形件尺寸差等抗起皱性单向拉伸试验r值,n值二次成形性多次压延试验极限再压延比4. 钣金成形中的应力应变状态及其几何表示方法工程应变(假象应变),其主应变为 这里 分别为原来长度和厚度,为变形后的长度和厚度。工程应变在弹性范围内仍近似于实际应变,但在塑性变形中,误差很大,在塑性变形中,一般用对数表示(实际应变),即 板内最大的实际应变为 板内最小的实际应变为 厚度方向的应变为 这里 实际应变与工程应变有以下关系: 工程应变不能迭加,而实际应变可以。如由原长即最后的总应变为: 体积不变的条件为: 1) 变形板中一点,其主应变或应力状态的几何表示方法,变形板料内一点A的应变状态,可用一点A来表示,连线OA与轴的夹角 为A点的应变状态参数,表示为,即。在简单加载的情况下(实际生产中,一次冲压成形,一般近似为简单加载),为常数。 2) 钣金冲压中的应力应变状态 二 厚向异性系数r目前研究的板料成形性能范围限于压延和胀形两种变形方式,对这两种变形方式有影响的参数,分别为厚向异性系数r与应变强化指数n。1. 厚向异性系数r的定义与意义厚向异性系数是以单拉中,宽度方向应变和厚度方向应变之比表示,即这里和分别是原始宽度和厚度,和是最后的宽度和厚度由于板件的厚度不均匀及拉伸后粗糙度增加,影响测量精度,可根据体积不变条件,即: 所以可以看出,当r1时,钣金在宽度方向收缩比厚度变薄更容易些,当r1时,钣金在厚度方向变薄比宽度方向收缩更容易些。在压延成形中,我们把拉压兼有的凸缘部分也就是压延性质的区域,当作主要变形区,但真正确定变形区能有多大的变形程度,关键在于有宽板拉伸性质的侧壁危险剖面的强度。,凸缘所压失稳的有害性质可以用有效的压边措施予以制止,但危险剖面的强度只取决与钣金本身的性质,即钣金固有的成型性能,在这里起决定性作用的是r值。r值愈大,钣金抗失稳变薄的能力愈大,能发挥拉伸失稳前的最大强度,拉动凸缘部分,形成更深的压延件。 当存在厚向异性r时,上式应写成: 如图,在压延中的危险剖面,其变形属于胀形性质,由于r值的增加而提高了屈服强度,也就是说,其变形抗力增加了。在凸缘部分,即拉压结合的压延变形区,其屈服应力反而由于r值的增加而减小了,这两种效果都有利于压延过程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论