



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计复习题一、名词解释:1、总体:根据研究目的确定的同质观察单位的全体。是同质所有观察单位的某种变量值的集合。2、有限总体:是指空间、时间范围限制的总体。3、无限总体:是指没有空间、时间限制的总体。4、样本:从总体中随机抽取部分观察单位,其实测值的集合。5、计量资料:又称定量资料或数值变量资料。为观测每个观察单位的某项指标的大小,而获得的资料。其变量值是定量的,表现为数值大小,一般有度量衡单位。根据其观测值取值是否连续,又可分为连续型或离散型两类。6、计数资料:又称定性资料或者无序分类变量资料,亦称名义变量资料,是将观察单位按照某种属性或类别分组计数,分组汇总各组观察单位数后得到的资料。其变量值是定性的,表现为互不相容的性或类别。分两种情形:(1)二分类:两类间相互对立,互不相容。(2)多分类:各类间互不相容。7、等级资料:又称半定量资料或有序分类变量资料,是将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。其变量值具有半定量性质,表现为等级大小或属性程度。8、随机误差(偶然误差):是一类不恒定的、随机变化的误差,由多种尚无法控制的因素引起,观察值不按方向性和系统性变化,在大量重复测量中,它可呈现或大或小,或正或负的规律性变化。9、平均数:描述一组变量值的集中位置或水平。常用的平均数有算术平均数、几何平均数和中位数。10、抽样误差:由于个体差异和随机抽样造成的样本统计量和总体参数之间的差异,以及统一总体若干样本统计量之间的差异。11、I型错误:拒绝了实际上成立的H0,这类“弃真”错误称为I型错误。检验水平,就是预先规定的允许犯I型错误概率的最大值。I型错误概率大小也用表示,可取单尾亦可取双尾。12、II型错误:“接受”了实际上不成立的H0,这类“取伪”的错误称为II型错误。其概率大小用表示,只取单尾,值的大小一般未知,须在知道两总体差值、及n时,才能算出。13、相对数:两个有联系的指标之比,是分类变量常用的描述性统计指标,常用两个分类的绝对数之比表示相对数学的大小。如率、构成比、比等。14、率:强度相对数,说明某现象发生的频率或强度。15、构成比:结构相对数字,表示事物内部某一部分的个体与该事物各个部分个体数的和之比。用来说明各构成部分在总体所占的比重或分布。16、相对比:简称比,是两个相关联指标之比,说明两指标间的比例关系。两指标可以性质相同,也可以性质不同,通常以倍数或百分数表示。两指标可以是绝对数、相对数或平均数。17、标准化:采用某影响因素的统一标准构成以消除内部构成不同对总率的影响,使通过标化后的标准率具有可比性。18、动态数列:是一系列按时间顺序排列起来的统计指标,用以观察和比较该事物在时间上的变化和发展趋势。常用指标有绝对增长量、发展速度与增长速度、平均发展速度与平均增长速度。19、非参数检验:相对于参数检验而言,不依赖于总体分布类型,也不对总体参数进行统计推断的假设检验方法,称为参数检验。20、相关系数:又称Pearson积差相关系数,以符号r来表示。说明两正态变量间相关关系的密切程度和方向的指标。无单位,其值为-1r1。相关系数的检验假设常用t检验。21、回归系数:即线性回归方程的斜率b,其统计意义是当X变化一个单位时Y的平均改变的估计值。在直线回归中对回归系数的t检验与F检验等价。22、随机原则:是指在实验分组时,每个受试对象均有相同的概率或机会被分陪配到实验组和对照组。23、分类变量资料:计数资料,又称定性资料或无序分类变量资料。是将观察单位按照某种属性或类别分组计数,分组汇总各组观察单位数后得到的资料。其变量值是定性的,表现为互不相容的性或类别。分两种情形:(1)二分类:两类间相互对立,互不相容。(2)多分类:各类间互不相容。24、无序分类变量资料:计数资料,又称定性资料。是将观察单位按照某种属性或类别分组计数,分组汇总各组观察单位数后得到的资料。其变量值是定性的,表现为互不相容的性或类别。分两种情形:(1)二分类:两类间相互对立,互不相容。(2)多分类:各类间互不相容。25、寿命期望:指同时出生的一代人活满x岁以后尚能生存的年数(即岁数)。26、检验效能:表达式为1-,以往称把握度。其意义为当两总体确有差异,按规定检验水准所能发现该差异的能力。27、观察单位:亦称个体,是统计研究中的基本单位。它可以是一个人、一只动物,也可以是特指的一群人;可以是一个器官,甚至一个细胞。28、样本含量:样本中包含观察单位数称为该样本的样本含量。29、变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,成为变量。30、变量值:对变量的观测值称为变量值或观察值。31、误差:泛指实测值与真实值之差,按产生原因和性质可粗分为(1)随机误差;(2)非随机误差系统误差非系统误差。32、系统误差:实验过程中产生的误差,它的值或恒不变,或遵循一定的变化规律,其产生的原因往往是可知的或可能掌握的。应尽可能设法预见到各种系统误差的具体来源,力求通过周密的研究设计和严格的技术措施施加以消除或控制。33、非系统误差:在实验过程中由于研究者偶然失误造成的误差。这类误差应当通过认真检查核对予以清除,否则将影响研究结果的准确性。34、频率:一个随机试验有几种可能,在结果重复进行试验时,个别结果看来是偶然发生,但当重复试验次数相当大时,总有规律出现。在重复多次后,出现结果的比例称之为频率。35、概率:概率是描述随机事件发生可能性大小的一个度量。36、医学参考值:是直指包括绝大多数正常人的人体形态、功能和代谢产物等个各种生理指标常数,也称正常值。由于存在个体差异,生物医学数据并非常数而是在一定范围内波动,故医学参考值范围作为判定正常和异常的参考标准。37、正态分布:正态分布又称高斯分布,是一种很重要的连续型分布,应用很广。若指标X的频率分布曲线对应于数学上的正态分布曲线,则称该指标服从正态分布。38、偏态分布:指集中位置偏向一侧,频数分布不对称。(1)正偏态分布:集中位置偏向数值小的一侧。(2)负偏态分布:集中位置偏向数值大的一侧。39抽样:在医学研究中,为节省人力、物力、财礼和时间,一般都采取从总体中抽取样本,根据样本信息来推断总体特征的方法,即抽样研究的方法来实现,这种从总体中随机抽取部分观察单位的过程称为抽样。为保证样本的代表性,抽样时必须遵循随机化原则。二、填空题1、医学统计工作的基本步骤:设计、搜集资料、整理资料、分析资料。2、医学统计资料的主要来源的四个方面:统计报表、经常性工作记录、专题调查、统计年鉴和数据库专集。3、正态分布的规律的应用:估计频数分布情况、质量控制、统计处理方法的理论基础、估计医学参考值范围。4、计量资料统计描述的方法:频数分布表、频数分布图、统计指标。5、CV(变异系数):常用于度衡量单位不同和均数相悬殊的多组资料变异度的比较。6、统计推断是从总体中随机抽样本,由样本信息推断总体特征的过程,包括参数估计和假设检验两方面内容。参数估计包括点估计和区间估计。7、可信区见估计的优劣取决于两要素:(1)可信度1-(准确度),即区间包含总体均数的理论概率大小,可信度愈接近1愈好。(2)区间宽度(精密度),即区间的长度,区间愈窄愈好。8、变量变换的方法有:对数变换、平方跟变换、倒数变换、平方根反正弦变换。9、常用的相对数:率、构成比、相对比。10、动态数列常用指标有:绝对增长量、发展速度与增长速度、平均发展速度、平均增长速度。11、二项式分布的参数是n和。n,n次独立重复实验数目;,每次实验的“阳性”概率。12、二项式分布在n很大,而很小,且n=为常数时,二项式分布近似Poisson分布。13、总体均数与总体方差2相等是Poisson分布的重要特征。14、Poisson分布具备可加性。15、当(总体率)增大时,Poisson分布渐近正态分布。16、四格表中四格子基本数值为两对实测的实际频数和理论频数。17、R*C表的卡方检验,若表格中有一个方向按多个等级分类时,则称之为单向有序行列表,当等级数大于3时,如检验各处理组各等级下的构成比有无差别时采用2检验,如检验各处理组各等级下的程度上有无差别时采用非参数检验。18、配对比较秩和检验,以正秩或负秩的和(T)为检验统计量,其中T越小则P的值小于相应的检验水平。19、正态分布的两个参数和2,前者决定分布的位置,后者决定分布的形态(形状、变异度)。20、四格表2的校正条件为n40而且1T5。21、R*C表资料2检验,如果有T1,应该采取的措施有:(1)增加样本含量,使理论频数增大;(2)根据专业知识考虑能否删除理论频数太小的行或列,能否将理论频数太小的行或列与性质相近的行或列合并。(3)改用双向无序R*C表资料的Fisher确切概率法。22、Poisson分布中,总体的方差与均数的关系是=2,当均数较大时,Poisson分布趋近于正态分布。23、要分析某个资料是否属于二项分布,可用频数分布的拟合优度的2检验。24、r是相关系数,表示具有直线关系的两变量间相关密切程度和相关方向。25、变异系数的应用条件是均数相差较大、观察指标单位不同。26、2表示理论频数与实际频数的符合程度。27、常用相对数的指标有强度相对数字(率)、结构相对数(构成比)、相对比(比)。28、常用的描述构成比的统计图有圆图和百分比条图。29、方差分析的应用条件为相互独立的随机样本、来自正态总体、方差齐性。30、实验设计的基本原则随即机原则、对照原则、重复原则。31、常用的几种统计图有直条图、圆图和百分比条图、线图、直方图、统计地图、其它特殊分析图。32、写出四种变量变换的方法:倒数变换、平方根变换、平方根反正弦变换、对数变换。33、在F检验中如有各比较组方差不齐时应用变量变换、近似t检验、Wilcoxon秩和检验的方法。34、四格表资料2适用条件:(1)n40且T5时用2检验的基本公式,当P时,改用四格资料表的Fisher的确切概率法;(2)n40且1T5时用,用四格资料表2检验的校正公式,或改用四格资料表的Fisher的确切概率法;(3)n40,或T1时,改用四格资料表的Fisher的确切概率法。35、当总体率很小时,当n很大时,二项分布可用泊松分布来近似。36、率的标准化的计算方法有直接标准化方法和间接标准化方法。37、2检验的用途:(1)推断两个总体率或构成比之间有无差别;(2)多个总体率或构成比之间有无差别;(3)两分类变量间有无关联性;(4)多个样本间的多重比较;(5)频数分布拟合优度的2检验。38、拟合优度检验常用判定实际分布是否符合正态分布、二项分布、Poisson分布和负二项分布。39、实验设计的三个基本要素为:实验单位、处理因素、实验效应。40、变异系数常用于观察单位指标不同和均数相差较大的多组资料变异度的比较。41、所有检验统计量是在H0的条件下计算出来的。42、标准化的目的是为了消除构成比不同对合计率的影响,使比较组间具有可比性。43、统计推断包括:参数估计(区间估计、点值估计)、假设检验。44、医学参考值的制定方法包括:正态分布法、百分位数法。45、Poisson分布的性质:(1)可加性、(2)总体均数与总体方差2相等、(3)当n很大而很小且n=时二项分布近似Poisson分布、(4)当增大时,Poisson分布渐近正态分布。46、集中趋势的描述指标:算术均数、集几何均数、中位数和百分位数。47、离散趋势的描述指标;极差、四分位数间距、方差与标准差、变异系数。第二章 计量资料的统计描述1、集中趋势、离散趋势的统计描述指标以及区别。答:一、集中趋势的描述指标:统计学用平均数这一指标来描述一组变量值的集中位置或平均水平。(1)算术均数:简称均数字,可用于反映一组呈对称分布的位置在数量上的平均水平。(2)几何均数:可用于反映一组经对数转换后呈对称分布的变量在数量上的平均水平,在医学研究中常适用于免疫学的指标。(3)中位数:是将n个变量值从小到大排列,位置居中间的那个数。分为奇偶两种情况。(4)百分位数:是一种位置指标,用PX来表示。二、描述数据变异大小的常用指标有极差、四分位数间距、方差、标准差和变异系数。(1)级差:级差即是一组变量最大的值与最小值之差。(2)四分位数间距:四分位数间距是把全部变量值分为四部分的分位数,即第1四分位数、第2四分位数、第3四分。四分位数间距,是由第三四分位数,和第1四分位数向减而得。(3)方差:也叫均方差,反映一组数据的平均离散水平。(4)标准差:是方差的正平方根,其量纲与原变量值相同(5)变异系数:记为CV,多用于观察指标单位不同时,或均数相差较大时的比较。它实质上是一个相对变异指标,无单位。三、两者的区别。A、集中趋势的描述:(1)算数均数:适用于对称分布资料;(2)几何均数:适合于作对数变换后对称分布资料;(3)中位数和百分位数:适用于任何分布的资料;中位数和百分位数在样本含量较少时不稳定,越靠两端越不稳定;中位数在抗极端值的影响方面,比均数具有较好的稳定性,但不如均数精确。因此,当资料适合计算均数或几何均数时,不宜用中位数表示其平均水平。不同质的资料应考虑分别计算平均数。B、离散趋势的描述:(1)极差不稳定,不灵敏。(2)标准差的基本内容是离均差,它显示一组变量值与其均数的间距,故标准差直接地、平均地描述了变量值的离散程度。在同质的前提下,标准差大表示变量值的离散程度大,即变量值的分布分散、不整齐、波动较大;反之,标准差小表示变量值的离散程度小,即变量值的分布集中、整齐、波动较小。(3)变异系数派生于标准差,其应用价值在于排除了平均水平的影响,并消除了单位。2、中位数和标准差的作用。答:(1)标准差:是方差的正平方根,其量纲与原变量值相同。标准差是统计分析中最常用的变异指标,适用于近似正态分布的资料,大样本、小样本均可用。四份位数间距适用于偏态分布资料,四分位半间距相当于偏态分布资料的“标准差”。(2)中位数:是将n个变量值从小到大排列,位置居中间的那个数。分为奇偶两种情况。中位数适用于任何分布资料,有不确定值的资料。常用于描述偏态分布资料的集中趋势,反映位次居中的观察值的平均水平。在对称分布的资料中,中位数和算术平均数在理论上是相同的。适用于当一组变量值呈偏态分布,或资料的分布情况不清楚,或变量值一端(或两端)无确定数值(开口型资料),均可用中位数表示其集中趋势。3、正态分布、标准正态分布及对数正态分布的联系和区别。答:(1)正态分布:原始值不需转换;属于对称分布类型;用表示集中趋势的指标;均数与中位数的关系是=M(中位数)。(2)标准正态分布:作u转换;属于对称分布类型;集中趋势=0;均数与中位数的关系是=M。(3)对数正态分布:作对数转换;属于正偏太分布;集中趋势用G(几何均数表示);均数与中位数的关系是M。第三章 总体均数的估计与检验假设1、举例说明标准差与标准误的区别与联系。答:标准差是描述个体值变异程度的指标,为方差算术平方根,该变变异不能通过统计方法来控制。而标准误则是指样本统计量的标准差,均数的标准误实质是样本均数的标准差,它反映了样本均数的离散程度,反映了样本均数与总体均数的差异,说明了均数的抽样误差。具体举例略。2、u分布和t分布有何不同。答:t分布为抽样分布;u分布为标准正态分布,为理论分布。t分布比标准正态分布的峰值低,且尾部翘得更高。随自由度的增大,t分布逐渐趋近标准正态分布。3、均数的可心信区间与参考值范围有何不同。答:(1)均数的可信区间按预先给定的概率所确定的未知参数的可能范围。用于估计总体的均数。(2)参考值范围是“正常人”的解剖、生理、生化某项指标的波动范围。用于判断观察对象的某项指标正常于否。4、t检验的应用条件。答:(1)单样本的t检验要求资料服从正态分布。(2)配对t检验要求差值服从正态分布。(3)两样本的t检验要求两组数据服均从正态分布,切两样本的方差相等,尤其对小样本。5、假设检验的结论不能绝对化。答:通过假设检验作出的检验推断具有概率性,有可能发生两类错误。拒绝HO时犯I型错误,接受HO时间犯II型错误。6、假设检验和区间估计的区别。答:假设检验用于推断质的不同的两个总体或多个总体参数是否不等。可信区间估计是用于说明量的大小,推断总体参数的范围。可信区间可以回答假设检验的问题。在判断两个或多个总体参数是否不相等时,假设检验与区间估计是完全等价的。第四章 多个样本均数比较的方差分析1、方差分析的基本思想和应用条件。答:基本思想:是根据实验设计的类型,将全部测量值总的离均差平方和及自由度分解为两个或多个部分,除随机误差作用外。每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释。通过比较不同变异的来源的均方,借助F分布作出统计推断从而推论各种研究因素对实验结果的影响。应用条件:各样本是相互独立的随机样本,均服从正态分布。相互比较的各样本的总体方差相等。具有方差齐性。2、随机区组设计与完全随机设计在设计和变异分解上有何不同。答:随机区组设计:随机分配的次数越多,每次随机分配都对同一区组内的受试对象进行,且歌处理组受试对象数量相同,区组内均衡。四种变异处理组间变异、区组间变异、误差变异、总变异。完全随机设计:采用完全随机化分组方法,将全部试验对象分配到g个处理组(水平组),各组接受不同的处理。三种变异组间变异、组内变异、总变异。第五章 计数资料的统计描述1、举例说明为什么不能以构成比代替率。答:(1)率=某时期内发生某现象的观察单位数字/同时期可能发生某现象的观察单位总数。用来说明某现象发生的频率或强度。(2)构成比=某一组成部分的观察单位数/同一事物各组成部分的观察单位总数。用来说明各构成部分在总体中所占的比重或分布。举例略。2、应用标准化率进行比较时的注意问题。答:(1)只适用于两组内部构成不同,并有可能影响两组分组的情况。(2)比较几个标准化率时采用统一标准口。(3)标准化后的标准化率,已不再反映当时当地的实际水平,它只表示相互比较的资料的相对水平。(4)两样本标准化率是样本值,存在抽样误差。3、相对数的动态指标及作用。答:即动态数列的分析指标:绝对增长量、发展速度与增长速度、平均发展速度与平均增长速度。(1)绝对增长量:某相对数在一定时期的增长的绝对值;(2)发展速度与增长速度:某相对数在一定时期的速度变化;(3)平均发展速度:各环节比发展速度的几何均数。说明某相对数在一个较长时期中平均发展变化的程度。第六章 几种离散型变量的分布及其应用1、二项分布的应用。答:(1)每次试验之发生两种互斥可能结果,互斥结果的概率和等于1;(2)每次产生某种结果的概率固定不变;(3)重复试验是独立的。2、Poisson分布的性质。答:(1)总体均数与总体方差2相等;(2)当n很大时候,而很小时候,n=为常数,Poisson分布是二项分布的极限分布;(3)当增大,Poisson分布渐近正态分布。当20时,做正态分布资料处理。(4)具可加性质。3、二项分布、Poisson分布和正态分布的联系。答:(1)当n很大时,而很小的时,且n=为常数,Poisson分布是二项分布的极限分布;(2)当n较大,而不接近0也不接近1时候,二项分布近似正态分布。(3)当增大时,Poisson分布渐进正态分布,一般20时,做正态分布资料处理。第七章 2检验1、2检验的用途。答(1)用于推断个总体率或构成比之间有无差别;(2)推断多个总体或构成比之间有无差别;(3)多个样本率比较的2分割;(4)两个分类变量间有无关联性;(5)频数分布的拟合优度检验。2、两样本率的u检验和2检验有何区别。答:两样本率进行比较时,若对同一样本资料同时进行u检验和2检验,在不教正的情况下,2=u2;u检验通常用于大样本,2检验用于小样本。3、R*C列联表资料的2检验应注意的事项。答:(1)R*C列联表中的理论频数不能小于1,或1T5的格子数不宜超过格子总数的1/5;(2)多个样本率比较,若所的到的统计推断为拒绝H0,接受H1时,只能认为各总体率之间总的来说有差别,但不能说任两个总体率有差别,需进一步做多个样本率的比较,做多个样本率的多重比较。(3)对有序的R*C列联表资料不宜用2检验。4、R*C列联表资料的分类及其检验方法的选择。答:(1)分类:双向无序、单向无序、双向有序属性相同、双向有序属性不同。(2)检验方法的选择:双向无序R*C列联表资料。研究多个样本率或构成比的比较,用行*列表的2检验;研究两分类变量间有无关联性以及关系密切程度,可用行*列表的2检验以及Pearson列联表系数进行分析。单向无序R*C列联表资料。若R*C表中的分组变量是有序的,而指标变量是无序的,用行*列表的2检验分析其构成情况。若R*C表的分组变量是无序的,指标变量是有序的,用秩转换的非参数检验分析。双向有序属性相同R*C列联表资料。用一致性检验分析两种检测两方法的一致性。双向有序属性不同R*C列联表资料。若研究目的为分析两有序分类变量间是否存在相关关系,用宜等级相关分析或Pearson积矩相关分析;若研究目的为分析两有序分类变量间是否存在线性变化趋势,宜用有序分组资料的线性趋势检验;若研究目的为分析不同年龄组患者疗效间有无差别时,可视其为单向有序R*C列联表资料,选用秩转换的非参数检验分析。第八章 秩转换的非参数检验1、非参数检验,与参数检验的区别。答:非参数检验对总体分布不作严格的假定,不受总体分布的限制,又称任意分布检验。它直接对总体分布(或分布位置)作假设检验。总体分布为已知的数学形式,对其总体参数作假设检验则为参数检验。2、秩转换的非参数检验,适用情况。答:秩转换的非参数检验是先将数值变量从小到大,或等级从弱到强转换成秩后,再计算检验统计量。其特点是假设检验的结果对总体的分布形状差别不敏感,只对总体的分布位置差别敏感。适用于:不满足正态或(和)方差齐性的小样本资料;分布不知是否正态的小样本资料;一端或两端是不确切数值的资料;等级资料。3、两组或多组等级资料的比较,为何不用2检验而用秩转换的非参数检验。答:2检验只能推断两个或多个总体的等级构成比的差别。选用秩转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学面试题问题及答案
- 月子护理场所管理制度
- 2025年 呼和浩特市机械工程职业技术学校招聘考试笔试试卷附答案
- 2025年 德州交通职业中等专业学校招聘考试笔试试卷附答案
- 新发布的安全培训课件
- 《数控车床加工技术(第2版)》中职全套教学课件
- 志愿者赋能培训
- 收费站恶劣天气应急处置培训
- 书法培训计划方案
- 肢体活动度训练体系构建
- 2025年新疆维吾尔自治区中考历史真题(解析版)
- 荆州中学2024-2025学年高二下学期6月月考历史试卷
- 2025-2030年中国婚庆产业行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2025学年苏教版四年级下学期期末测试数学试卷(含答案)
- 2025年中考化学必考要点知识归纳
- 三年级语文下册全册重点知识点归纳
- 公路养护材料管理制度
- JG/T 330-2011建筑工程用索
- 单位消防培训课件教学
- 项目可行性研究报告风险管理与应急措施制定策略
- 生产经营单位事故隐患内部报告奖励制度
评论
0/150
提交评论