过电压重点.docx_第1页
过电压重点.docx_第2页
过电压重点.docx_第3页
过电压重点.docx_第4页
过电压重点.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电磁暂态分析的理论基础1、电源合闸至单频振荡电路,在电容元件上产生的最大过电压幅值为 ,Ucm=稳态值+振荡幅值=稳态值+(稳态值初始值)=2*稳态值初始值2、 导致波在传播过程产生损耗的因素主要有以下四种:1)导线电阻引起损耗;2)导线对地电导引起的损耗;3)大地电阻的损耗;4)导线发生电晕引起的损耗。3、 冲击电晕对波过程的影响对导线耦合系数的影响:发生冲击电晕后,在导线周围形成导电性能较好的电晕套,在这个电晕区内充满电荷,相当于扩大了导线的有效半径,因而与其它导线间的耦合系数也增大。对波阻抗和波速的影响:冲击电晕将使线路波阻抗减小 、波速减小对波形的影响:冲击电晕减小波的陡度、降低波的幅值的特性,有利于变电所的防雷保护。4一般连续式变压器绕组的l值为510。变压器绕组的末端不论接地与否,其初始电压分布均相同,按指数规律分布。最大电位梯度出现在绕组的首端。冲击电压波作用于变压器绕组初瞬,绕组首端的电位梯度是平均电位梯度的l倍。l越大,电位分布越不均匀,相应绕组的抗冲击能力越差。(危及变压器绕组的首端匝间绝缘 )5变压器绕组中的电磁振荡过程在10s以内尚未发展起来,在这段时间内变压器绕组的特性主要由其纵向电容和对地电容组成的电容链决定,对首端来说相当于一个等效集中电容Cr,称为变压器的入口电容。6最大电位梯度均出现在绕组首端,其值等于U0,对变压器绕组的纵绝缘(匝间绝缘)有危害。绕组内的波过程除了与电压波的幅值有关外,还与作用在绕组上的冲击电压波形有关。过电压波的波头时间越长(陡度越小),由于电感分流的影响,振荡过程的发展比较和缓,绕组各点的最大对地电压和纵向电位梯度都将下降;反之则振荡越激烈。波尾也有影响,在短波作用下,振荡过程尚未充分激发起来时,外加电压已经大为减小,导致绕组各点的对地电压和电位梯度也比较低。截波作用下绕组内的最大电位梯度将比全波作用时大,会在变压器绕组中产生很大的电位梯度,从而危及变压器绕组的纵绝缘,电力变压器不仅需要进行全波冲击耐压试验,还要通过截波耐压试验。7三相变压器绕组,三角形接线方式()对于三角形接线的变压器,当冲击电压波沿一相线路(A相)入侵时,同样因为绕组的冲击波阻抗远大于线路波阻抗,所以B、C两端点相当于接地,因此在AB、AC绕组中的波过程与单相绕组末端接地的情况相同。若发生两相或三相线路进波,则三角形接线的每相绕组两端同时有波侵入,当波传到绕组中部时,相当于波传到开路末端的情况,会产生较高的过电压,在各相绕组的中部出现的最大对地电位将达2U0。8变压器绕组内部保护的关键措施是:改善绕组的初始电位分布,使初始电位分布尽可能地接近稳态电位分布。这可有效地降低作用在绕组纵绝缘上的电位梯度,并削弱振荡,减小振荡过电压的幅值.。(1)补偿对地电容C0dx的影响;(静电环)(2)增大纵向电容K0/dx (纠结式绕组 )变压器和电机绕组内部暂态过程1 在冲击电压作用下,变压器绕组的初始电压分布对变压器绝缘有何影响?如何改善绕组初始电压分布:初始电压分布要尽量接近稳态电压分布,可有效降低作用在绕组纵绝缘上的电位梯度,并消弱振荡,减小振荡过电压的幅值。改善方法:补偿对地电容的影响, 增大纵向电容2 变压器在冲击电压下产生振荡的原因, 振荡的对地最大电位与哪些因素有关绕组电容电感之间的能量转换和电压初始分布于最终分布不一致导致振荡。Umax与绕组末端接地有关 接地,出现在拒绕组首段附近l/3处,1.4U0;不接地,绕组末端,1.9U0。最大Umax作用于变压器绕组的主绝缘。3 对三相变压器,什么样的进波条件下和在变压器绕组的什么部位会产生最严重的振荡过电压:三相绕组同时进波,在震荡过程中产生的中性点最大电位将为首端电位的两倍 4 电机绕组为什么容量越大,波速和波阻越小,而当额定电压越高时,波阻越大?电机容量大,导线的半径将增大,每槽的匝数将减小,使电容C0增大而L0减小,使其波阻抗减小;电压等级升高,电机每槽匝数增多,L0变大,因而波阻抗增大。雷电参数和防雷措施9雷电参数:1)雷暴日Td:在指定地区内一年四季所有发生雷电放电的天数,以Td表示。一天内只要听到一次或一次以上的雷声就算是一个雷电日。根据雷电活动的频繁程度,通常把我国年平均雷电日数超过 90的地区叫做强雷区,把超过40的地区叫做多雷区,把不足15的地区叫做少雷区。2)雷暴小时:在一个小时内,只要听到一次或一次以上雷声就算是一个雷电小时。3)地面落雷密度:云地放电频度。单位时间,单位面积的地面平均落雷次数。4).雷电流:雷直击于接地良好的物体时泄入大地的电流。(幅值 陡度 波形 极性)10避雷器与电子设备防雷保护器件基本要求:1. 过电压限制器的放电电压应略高于系统的最大工作电压。 2. 过电压限制器应具有良好的伏秒特性,与被保护设备有合理的绝缘配合。3. 过电压限制器应有较强的绝缘强度自恢复能力。避雷器的电气参数:(1)标称放电电流:冲击波形为8/20s的放电电流峰值,单位kA,用以区分避雷器的等级。我国规定的标称电流有1、1.5、2.5、5、10和20kA几个等级。(2)残压:包括标称放电电流下的残压、陡波电流下的残压和操作冲击电流下的残压。其中陡波电流波形为1/5s,操作冲击电流的波头时间为30100s。(3)雷电冲击保护水平:避雷器标称放电电流下的残压值为其雷电冲击保护水平。陡波电流下的残压与标称放电电流下的残压之比不得大于1.15。(4)操作冲击保护水平:避雷器在操作冲击电流(波头时间为30100s)下的最大残压。(5)额定电压:指能施加在避雷器两端的最大允许工频电压有效值,(6)最大持续运行电压:为在运行中允许持续地施加在避雷器上的最大工频电压有效值,单位kV。其值一般应等于或大于额定电压的0.8倍,且不低于系统的最高运行相电压。(7)起始动作电压(又称参考电压或转折电压):通常指通过1mA工频阻性电流分量峰值或1mA直流电流时避雷器端电压的峰值U1mA。(8)压比:指避雷器在波形为8/20S的标称冲击电流(例如10kA)作用下的残压U10kA与起始动作电压U1mA之比。压比(U10kA/U1mA)愈小,表明避雷器的非线性愈好。(9)荷电率:指最大持续运行电压的幅值与起始动作电压的比值。11接地电阻R的数值等于接地装置对地电压U与通过接地极流入地中电流I的比值。接地电阻R的数值与大地的结构和电阻率直接有关,还与接地体的形状和几何尺寸有关。 冲击接地电阻冲击接地电阻:雷电流作用下接地装置的冲击接地电阻的计算,通常是在工频接地电阻计算的基础上,考虑冲击系数,的数值可根据计算分析和实验得到。冲击系数:接地极流过冲击电流呈现的接地电阻成为冲击接地电阻,接地极流过的工频交流电流呈现的电阻称为工频接地电阻,两者的比值称为冲击系数。加大接地体的尺寸可以减少接地电阻,但由于雷电流的等值频率很高,伸长接地体在雷电流的作用下,接地体自身的电感将会产生很大影响,会增加接地体的阻抗。所以,通常伸长接地体只在4060m的范围内有效,超过这一范围对降低接地阻抗不起作用。输电线路杆塔接地:在高压输电线路的每一基杆塔下一般都设有接地装置,并通过引线(或金属杆塔本身)与避雷线相连,其目的是使击中避雷线和杆塔的雷电流通过较低的接地电阻进入大地。高压线路杆塔都有混凝土基础,它们也起着接地体的作用,称为自然接地体。只有在土壤电阻率较低(300m以下)的地区,自然接地体才有些作用。在大多数情况下,单纯依靠自然接地体是不能满足要求的,需要装设人工接地装置。发电厂和变电站的接地:发电厂和变电站的接地,将同时起到工作接地、安全接地和防雷接地的作用。发电厂变电站的接地体主要采用由扁钢水平敷设组成的地网,以将变电站内的设备与接地体相连,同时使站内的地表电位分布均匀,其面积S大体与发电厂和变电所的面积相同。输电线路防雷保护12雷击线路可能引起两种破坏:短路接地故障,引起线路跳闸停电事故;雷击线路形成的雷电过电压波(侵入波),沿线路传播侵入变电所,危害变电站电气设备的安全运行。 输电线路防雷性能的重要指标是耐雷水平和雷击跳闸率。避雷线对降低感应过电压的作用:对架设有避雷线的线路,避雷线的电磁屏蔽作用可使导线的感直过电压降低。这是由于避雷线与大地相接,保持地电位,即将大地引入导线近区。对于静电感应,可以增大导线对地电容,从而使导线对地电位降低;对于电磁感应,其相当 于在导线与大地回路附近增加了一个地线与大地的短路环,抵消了部分导线上的电磁感应电势,因而接地避雷线的辱蔽效果是降低导线的感应雷过电压。为什么额定电压低于35kV的线路一般不全线架设避雷线?35kV及以下线路因为绝缘相对较弱,装避雷线效果不大,一般不全线假设避雷线。只在距变电站1-2km加装避雷线,减少绕击和反击的几率。为什么绕击的绝缘水平远低于直击杆塔的水平:绕击时绝缘子串上承受的过电压幅值为100I(220kV及以下),往往会引起绝缘子串的闪络。雷击线路附近地面时导线上的感应过电压:13设雷云带负电荷,在主放电开始之前,雷云中的负电荷沿先导通路向地面运动,线路处于雷云和先导通道形成的电场中。由于静电效应,在最靠近负先导通道的一段导线上聚集了异号的正电荷,成为束缚电荷。导线上的负电荷被排斥到导线两端远处。由于先导发展的速度很慢,导致线路上束缚电荷的聚集过程也比较缓慢,因而导线上由此而形成的电流很小,可以忽略不计。雷击地面主放电开始后,先导通道中的负电荷被迅速中和,导线上的束缚电荷转变成自由电荷沿导线向两侧运动。这种由于先导通道中电荷所产生的静电场突然消失而引起的感应电压称为感应过电压的静电分量。同时,主放电通道中的雷电流在通道周围空间产生了强大的磁场,该磁场交链导线与大地的回路,也将使导线上感应出电压。这种由于主放电通道中雷电流所产生的磁场变化而引起的感应电压,称为感应过电压的电磁分量。由于主放电通道与导线几乎互相垂直,电磁感应较弱,因此电磁分量不大,约为静电分量的1/5。感应雷过电压的极性与雷电流极性相反,并且感应雷过电压的静电分量和电磁分量都是由同一主放电过程产生的电磁场突变引起的,感应雷过电压中静电分量起主导作用。感应过电压的大小与雷电流幅值I成正比;感应过电压的大小与导线悬挂的平均高度成正比;感应雷过电压的大小与雷击点距导线的距离成反比。雷电感应过电压幅值一般不超过300400kV。对35kV及以下输电线路,可能造成绝缘闪络,而对于110kV及以上线路,一般不会引起闪络。雷电感应过电压在三相导线中同时存在,三相导线上感应过电压在数值上的差别仅仅是导线高度不同引起的,相间电位差很小,一般不会引起架空线路的相间绝缘闪络。如果导线上方架设有避雷线,发生雷击导线附近大地时,由于避雷线的屏蔽作用,导线上的感应电荷会减少,从而导线上的感应过电压将会下降。输电线路的耐雷水平与雷击跳闸率14(1)、输电线路与雷击相关的参数1). 输电线路落雷次数N2). 击杆率g:雷击杆塔顶部的次数N1与线路总的落雷次数N之比3.) 绕击率P:雷绕击导线的次数N2与雷击线路总次数N的比值4). 建弧率:冲击电弧转化为稳定的工频电弧的概率(2)雷击杆塔塔顶时的耐雷水平:雷击杆塔时的耐雷水平与分流系数、杆塔等值电感Lt、杆塔冲击接地电阻Ri、导地线间的耦合系数k和绝缘子串的冲击放电电压U50%有关。要提高输电线路的耐雷水平,应在以上几方面采取措施。其中,降低冲击接地电阻Ri和提高导地线间的耦合系数k效果会比较明显,是提高输电线路的反击耐雷水平的主要手段。U(3)雷绕击导线时的耐雷水平: I2?50%100(4)雷击档距中央避雷线的耐雷水平,不管此时雷电流多少,线路都耐受。15雷击跳匝率求得输电线路的耐雷水平后,根据雷电流的概率分布,求出雷电流超过输电线路的耐雷水平的概率,即雷击闪络的概率,再乘以建弧率,可以求出输电线路雷击跳闸的概率。雷击跳闸的概率乘以输电线路的落雷次数即为输电线路的雷击跳闸率。15输电线路的防雷措施:架设避雷线 (防止雷直击导线;分流;使杆塔电位下降;耦合作用,降低绝缘子串上的过电压;屏蔽作用,降低导线上的感应过电压。);降低杆塔接地电阻;架设耦合地线 (分流;耦合 );采用不平衡绝缘方式;装设自动重合闸;加强线路绝缘;安装线路避雷器;加装塔顶拉线;架设旁路架空地线发电厂和变电站的防雷保护16发电厂和变电站的防雷保护:发电厂和变电站直击雷防护采用避雷针(线)。必须使发电厂和变电站中所有被保护物体处于避雷针和避雷线的保护范围之内,同时还要求雷击避雷针和避雷线时,不应对被保护物体发生反击。装设的避雷针可分为独立避雷针和构架避雷针。17变电站的侵入波防护变电站侵入波的防护,采取的主要措施是采用避雷器。不论被保护设备位于避雷器前或避雷器后,只要设备离避雷器有一段距离,则设备上所受冲击电压的最大值必然高于避雷器的残压。避雷器的保护距离:最大电气距离:当侵入波的陡度一定时,避雷器与被保护设备之间的电气距离越大,设备上的电压高出避雷器的残压也就越多。因此,要使避雷器起到良好的保护作用,它与被保护设备之间的电气距离就不能超过一定的值(最大电气距离lmax)。 Lmax=(Uj-U5)/2(a/v)k Uj为变压器的多次截波耐压值;U5为避雷器的残压;为雷电波的陡度;k为考虑电气设备入口电容而引入的修正系数;为波速18变电站的进线段保护:进线段:指靠近变电站长度为12km的一段架有避雷线的线路。进线段保护是指在进线段上加强防雷保护措施。对于35110kV全线无避雷线的线路,进线段必须架设避雷线,避雷线对导线的保护角不大于20o;对于110kV及以上全线架设避雷线的线路,在进线段内应使保护角减小,并使进线段线路有较高的耐雷水平。作用:减少直击雷形成侵入波的概率;削弱侵入波的陡度,降低侵入波的幅值;限制流入避雷器的雷电流。19变压器的中性点和配电变压器的防雷保护:一、变压器中性点的防雷保护对于35kV及以下中性点非有效接地的系统,变压器是全绝缘的,其中性点的绝缘水平与相线端相同。这种变压器的中性点一般不用接避雷器保护 。110kV及以上的中性点有效接地的系统,不接地的变压器中性点,需在中性点上加装阀型避雷器或保护间隙,避雷器的灭弧电压应大于该电网单相接地而引起的中性点电位升高的有效值。500kV的变压器,其中性点通常是直接接地或经小电抗接地,中性点的绝缘水平为35kV级,应选用相应电压等级的避雷器进行保护。中性点装有消弧线圈的变压器,且有单回进线运行的可能性时,应在中性点上加装避雷器。二、配电变压器的防雷保护三点联合接地:高压侧避雷器接地线与变压器的金属外壳以及低压侧中性点连在一起共同接地;正、反变换过电压;四点联合接地:高压侧避雷器的接地端、低压绕组的中性点、低压侧避雷器的接地端、以及变压器的外壳连在一起共同接地。20GIS变电站的防雷保护GIS是将除变压器以外的变电站高压电器以及母线封闭在一个接地的金属壳内,壳内以34个大气压的SF6气体作为相间绝缘和相对地绝缘。GIS也叫做SF6全封闭组合电器变电站。 特点:导线波阻抗 较小、绝缘伏秒特性平坦、结构紧凑、内绝缘为稍不均匀电场结构、绝缘受外界影响小21直配电机的防雷保护:在发电机出线母线上安装一组避雷器;在发电机母线上装设一组并联电容器C;在发电机和架空线间接入一段电缆并在电缆首端加装管式避雷器;当发电机中性点有引出线时,在中性点加装一只避雷器;在电缆首端前方70m加装管式避雷器以发挥电缆段的作用;60MW以上的发电机不能与架空线直接连接,不能以直配电机的方式运行。工频过电压22系统中在操作或接地故障时发生的频率等于工频(50 Hz)或接近工频的高于系统最高工作电压的过电压。当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。我国500kV电网:要求母线的暂态工频电压升高不超过工频电压的1.3倍(420kV),线路不超过1.4倍(444kV),空载变压器允许1.3倍工频电压持续1min产生工频过电压的主要原因:空载长线路引起的电容效应、系统发生不对称接地故障以及发电机的突然甩负荷。限制工频过电压应针对具体情况采取专门的措施,常用的方法有:采用并联电抗器补偿空载长线的电容效应,选择合理的系统中性点运行方式,对发电机进行快速电压调整控制等等。在超特网中,系统中有可能在伴随工频电压升高的同时,产生操作过电压。这两种过电压联合作用会对电气设备绝缘造成危害23电源漏抗和并联电抗器对空载长线路电容效应的影响:线路电容电流流过电容漏抗会使电容电压升高,使线路首端电压高于电源电势,相当于加长了线路长度线路末端接有并联电抗器时,线路末端电压U2将随电抗器的容量增大(XL减小)而下降。这是因为并联电抗器的电感能补偿线路的对地电容,减小流经线路的电容电流,削弱了电容效应。空载线路末端接并联电抗器后,沿线电压分布。并联电抗器的作用不仅是限制工频电压升高,还涉及系统稳定、无功平衡、潜供电流、调相调压、自励磁及非全相状态下的谐振等方面。24限制工频过电压的主要措施:1.并联高压电抗器补偿空载线路的电容效应。2.静止无功补偿器补偿空载线路电容效应。3.变压器中性点直接接地降低不对称故障引起的工频电压升高。4.发电机配置性能良好的励磁调节器或调压装置,使发电机甩负荷时抑制容性电流对发电机助磁电枢反应。防止过电压的产生和发展。5.发电机配置反应灵敏的调速系统,甩负荷时限制发电机转速的上升造成的工频过电压。大气过电压又称为外部过电压,包括对设备的直击雷过电压和雷击于设备附近时在设备上感应的过电压。为防止直击雷对变电站设备的侵害,变电站装有避雷针和避雷线。为防止进行波的侵害,按电压等级装阀型避雷器、磁吹避雷器、氧化锌避雷器和与此配合的进线保护段,即架空地线、管型避雷器或火花间隙,在中性点不接地系统中装消弧线圈,可减少雷击跳闸次数。所有防雷设备都装有可靠的接地装置。防雷装置的主要功能是引雷、泄流、限幅、均压。25不对称接地引起的工频过电压当系统发生单相或两相不对称对地短路故障时,短路引起的零序电流会使健全相上出现工频电压升高,其中单相接地时非故障相的电压可达较高的数值,若同时发生健全相的避雷器动作,则要求避雷器能在较高的工频电压作用下熄灭工频续流。单相接地时工频电压升高值是确定避雷器灭弧电压的依据。在系统发生单相接地故障时,可以采用对称分量法,利用复合序网进行分析计算非故障相的电压升高。健全相的电压升高与故障点看进去的正序、负序、零序入口阻抗有关。:接地系数,说明单相接地故障时,健全相的对地最高工频电压有效值与故障前故障相对地电压有效值之比。26甩负荷引起的工频电压升高当甩负荷后,发电机中通过激磁绕组的磁通来不及变化,与其相应的电源电势Ed 不变。原来负荷的电感电流对主磁通的去磁效应突然消失,而空载线路的电容电流对主磁通起助磁作用,使Ed上升。因此加剧了工频电压的升高。其次,从机械过程来看,发电机突然甩掉一部分有功负荷,而原动机的调速器有一定惯性,在短时间内输入给原动机的功率来不及减少,主轴上有多余功率,这将使发电机转速增加。转速增加时,电源频率上升,不但发电机的电势随转速的增加而增加,而且加剧了线路的电容效应。谐振过电压27当系统进行操作或发生故障时,这些电感、电容元件形成各种振荡回路,在一定条件下,可以产生串联谐振现象,导致系统中某部分或某元件上出现严重的谐振过电压。谐振过电压持续时间比操作过电压长得多,甚至可稳定存在,直到破坏谐振条件为止。但在某些情况,谐振发生一段时间后会自动消失,不能自保持。谐振过电压的危害性既决定于其幅值大小,也决定于持续时间长短。谐振过电压将危及电气设备绝缘,也可能因谐振持续的过电流烧毁小容量电感元件设备(如电压互感器)。 谐振分为线性谐振、参数谐振、铁磁谐振28消弧线圈补偿网络中的谐振在中性点不接地的配电网中, 消弧线圈的主要作用是补偿系统单相接地故障的短路电流。利用消弧线圈灭弧后,故障相恢复电压的自由振荡的角频率与系统电源的角频率相接近,恢复电压将以拍频的规律缓慢上升,从而可以保证电弧不再发生重燃和最终趋于熄灭,使系统恢复正常运行。消弧线圈的功能有:补偿系统单相接地电容电流、延缓恢复电压的上升速度促使电弧自熄。 从减小残流、熄灭接地电弧来说,消弧线圈的脱谐度越小越好。实际系统中消弧线圈又不宜运行在全补偿状态,因为系统正常运行时,电网三相对地电容不对称,可能在系统中性点上出现较大的位移电压。当系统接入消弧线圈后,恰好形成零序谐振回路,在系统位移电压的作用下将发生线性谐振现象。29抑制传递过电压的措施:.避免出现系统中性点位移电压,如尽量使断路器三相同期操作;装设消弧线圈后,应当保持一定的脱谐度,避免出现谐振条件;在低压绕组侧不装消弧线圈的情况下,可在低压侧加装三相对地电容,以增大3C0。30超高压电网中的潜供电流系统发生单相接地故障时,非故障相的工作电压和负载电流可以通过相间电容和互感对故障相产生静电感应和电磁感应,使故障相在与电源断开后仍能维持一定的接地电流,被称为潜供电流(二次电流)。潜供电流以电弧的形式存在,而潜供电流的自熄是单相自动重合闸成功的必要条件。潜供电流的自熄取决于潜供电流的大小及电弧熄灭后作用于故障点的恢复电压。潜供电流和恢复电压均由静电感应和电磁感应两个分量组成,而起主导作用的是静电感应分量,静电感应分量是通过相间电容传递过来的。要限制潜供电流和接地故障点的恢复电压,可采取在导线间装设一组三角联接的电抗器,补偿相间电容,使相间阻抗趋向无穷大,这样潜供电流的横分量和恢复电压的静电感应分量都将趋于零(补偿法 )。考虑系统限制空载长线路工频电压升高的要求,系统应装设一组星形联接而中性点接地的电抗器。31铁磁谐振具有以下特点:产生串联铁磁谐振的必要条件是:电感和电容的伏安特性曲线必需相交在相同的电源电势作用下,回路有两种不同性质的稳定工作状态。在外界激发下,电路可能从非谐振工作状态跃变到谐振工作状态,相应回路从感性变成容性,发生相位反倾现象,同时产生过电压与过电流。非线性电感的铁磁特性是产生铁磁谐振的根本原因,但铁磁元件饱和效应本身也限制了过电压的幅值。此外,回路损耗也是阻尼和限制铁磁谐振过电压的有效措施。基波铁磁谐振 、高次谐波谐振、分频谐振32断线引起的铁磁谐振过电压断线泛指导线因故障折断、断路器拒动以及断路器和熔断器的不同期切合等。非全相运行时的谐振电路,在一定的参数配合和激发条件下,可能会产生基频、高频或分频谐振。当发生基频谐振时,会出现三相对地电压不平衡,如两相电压升高、一相电压降低,或三相电压同时升高的现象。在负载变压器侧可能发生负序电压占主要成分的情况,引起系统相序反倾,造成小容量电机反转的现象。为防止断线过电压,可采取下列的限制措施:保证断路器的三相同期动作,不采用熔断器设备;加强线路的巡视和检修,预防发生断线;若断路器操作后有异常现象,可立即复原,并进行检查;不要把空载变压器常期接在系统中;在中性点接地的电网中,合闸中性点不接地的变压器时,先将变压器中性点临时接地。这样做可使变压器未合闸相的电位被三角形联接的低压绕组感应出来的恒定电压所固定,不会引起谐振。33电磁式电压互感器饱和引起的铁磁谐振过电压正常运行时,电压互感器的励磁阻抗很大,所以每相对地阻抗(L和C0并联后)呈容性,三相基本平衡,系统中性点0的位移电压很小。但当系统中出现某些扰动,使电压互感器三相电感饱和程度不同时,系统中性点就有可能出现较高的位移电压,激发起谐振过电压。 由于电压互感器饱和程度不同,会造成系统两相或三相对地电压同时升高,整个电网对地电压的变动表现为电源中性点0的位移(电网中性点的位移过电压)。中性点的位移电压也就是电网的对地零序电压,将全部反映至互感器的开口三角绕组,引起虚幻的接地信号和其它的过电压现象,造成值班人员的错觉。中性点直接接地的电网 、中性点经消弧线圈接地的情况下 ,不会出现此类谐振过电压。 虚幻接地现象是电磁式电压互感器饱和引起工频(基频)谐振过电压的标志。341)铁磁谐振过电压是怎么产生的,其与线性谐振相比有什么不同的特点?由于空载变压器,电磁式电压互感器等铁磁电感的饱和,可能与系统电容参数配合,激发起持续时间长,幅值较高的铁磁谐振过电压1 可以再较大参数范围内产生2 在外界激发下,可能从非谐振工作状态跃变到谐振工作状态,相应回路从感性变成容性,发生相位反倾,同时产生过电压与过电流3 非线性电感的电磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值,此外,回路损耗也是阻尼和限制铁磁谐振过电压的有效措施。2)电磁式电压互感器是如何引起基波铁磁过电压的?如何限制和消除铁磁谐振过电压 正常运行时,电压互感器的励磁阻抗很大,每相对地阻抗为容性,中性点的位移电压很小,但当系统中出现某些扰动,使电压互感器的三相电感饱和程度不同时,系统中性点就有可能出现较高的位移电压,激发铁磁谐振过电压措施:改变系统零序参数:投入零序阻尼:采用专门的消谐装置3)系统因电磁式电压互感器饱和,分别引起基波 分屏 高频谐振过电压时,将会出现什么不同的现象:基波(一相对地电压降低,虚幻接地);分频(表计指示有抖动或以低频来回摆动);高频(过电压数值较高)35参数谐振过电压参数谐振过电压有以下的特点:参数谐振所需要的能量由改变参数的原动机供给,不需要单独的电源,一般只要有一定的剩磁或电容中具有很小的残余电荷,就可以使谐振得到发展;由于回路中有损耗,所以参数变化所引入的能量必须足以补偿损耗能量,才能保证谐振的发展。对一定的回路电阻R,存在一定的谐振范围。谐振发生以后,由于电感的饱和,使回路自动偏离谐振条件,使自励磁过电压不能继续增大。抑制参数谐振过电压措施有:利用快速自动励磁调节装置消除同步自励磁;在超高压电网中投入并联电抗器,补偿线路电容,使得等值容抗大于和,从而消除谐振;临时投入串联电阻。操作过电压36间歇电弧接地.过电压产生机理:当中性点不接地系统中发生单相接地时,经过故障点将流过数值不大的接地电容电流。随着电网的发展和电压等级的提高,单相接地电容电流随之增加,一般 6 l0kV 电网的接地电流超过30A,35 60kV 电网的接地电流超过10A 时电弧便难以熄灭。但这个电流还不至于大到形成稳定燃烧电弧,因此可能出现电弧时燃时灭的不稳定状态,引起电网运行状态的瞬时变化,导致电磁能量的强烈振荡,并在健全相和故障相上产生过电压,这就是间歇性电弧接地过电压。过电压产生原因:当发生间歇性电弧接地时,健全相对地电压的起始值与稳态值不同,电容与电源电感产生振荡引起过电压。限制过电压的措施:消除间歇性电弧:110kV 及以上电网大都采用中性点直接接地的运行方式(单相短路电流,断路器跳闸切除故障);我国 35kV 及以下电压等级的配电网采用中性点经消弧线圈接地的运行方式(补偿电容电流)消弧线圈的基本作用: 补偿流过故障点的短路电流,使电弧能自行熄灭,系统自行恢复到正常工作状态。 降低故障相上的恢复电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论