等腰三角形时常用的辅助线作法.doc_第1页
等腰三角形时常用的辅助线作法.doc_第2页
等腰三角形时常用的辅助线作法.doc_第3页
等腰三角形时常用的辅助线作法.doc_第4页
等腰三角形时常用的辅助线作法.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF常过一腰上的某一已知点做底的平行线例:已知,如图,ABC中,AB =AC,F在AC上,E在BA延长线上,且AE = AF,连结DE求证:EFBC常将等腰三角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB = AC,BAC = 80o ,P为形内一点,若PBC = 10o , PCB = 30o 求PAB的度数.有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE,交BC于E,则1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)过A作AEBC于E(过程略)(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DNAE,交BC于N,则DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = EC DNFECFDF = EF(证法二)过E作EMAB交BC延长线于M,则EMB =B(过程略)常过一腰上的某一已知点做底的平行线例:已知,如图,ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DEBC证明:(证法一)过点E作EFBC交AB于F,则AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(证法二)过点D作DNBC交CA的延长线于N,(过程略)(证法三)过点A作AMBC交DE于M,(过程略)常将等腰三角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB = AC,BAC = 80o ,P为形内一点,若PBC = 10o PCB = 30o 求PAB的度数.解法一:以AB为一边作等边三角形,连结CE则BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形BCE,连结AE,则EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂线上同理A在BC的中垂线上EA所在的直线是BC的中垂线EABCAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论