




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
非全相运行是三相机构分相操作发电机主开关在进行合、跳闸过程中,由于某种原因造成一相或两相开关未合好或未跳开,致使定子三相电流严重不平衡的一种故障现象。长时间非全相运行很大的负序电流将损坏发电机定子线圈,严重时烧坏转子线圈,折断大轴,因此应闭锁距离一段保护,由于大型发电机多采用三相分相操作主开关,非全相运行已成为发电厂电气运行的重点防止对象。在220kV及以上电压等级的电网中,普遍采用分相操作的断路器,由于设备质量和操作等原因,运行中可能出现三相断路器动作不一致的异常状态,如何消除这种异常状态,存在不同认识,各系统也有不同做法。下面结合系统和保护的实际运行情况,就装设断路器非全相保护的必要性进行阐述,对当前非全相保护的常见方案进行分析,并对3/2断路器接线的非全相保护的一些问题进行探讨。1 装设非全相保护的必要性电力系统在运行时,由于各种原因,断路器三相可能断开一相或两相,造成非全相运行。如果系统采用单重或综重方式,在等待重合期间,系统也要处于非全相运行状态。但是,系统非全相运行的时间应有所限制,这是因为:a.系统要求。当系统处于非全相运行状态时,系统中出现的负序、零序等分量对电气设备产生一定危害。b.保护要求。由于出现负序、零序等分量,使得系统中的一些保护可能处于启动状态。例如:目前常用的11系列微机线路保护,当系统由全相变为非全相运行时,如果保护突变量元件启动,在判断无故障后,保护程序转入振荡闭锁模块,若该线路零序分量数值大于零序辅助启动元件定值时,程序将处于振荡闭锁状态,超过12s时,保护将报告电流互感器(TA)断线,整套保护中仅余少数保护功能起作用,严重影响保护的可靠性。系统中的负序、零序等分量还可能使一些保护(如零序电流保护)动作跳闸,误断开正常运行的线路。对于系统采用单重、综重等方式,故障跳闸造成的非全相运行,若重合闸成功,系统自然很快转入全相运行;若重合于故障,断路器三相跳闸,系统也转入全相运行。对这种等待重合的非全相状态,系统中的设备和保护必须予以考虑。例如某些保护段可采取提高定值、加大延时等措施,以躲过重合闸周期。对于因设备质量、回路等问题造成的非全相状态,情况要复杂一些。例如,断路器偷跳一相,由于断路器位置不对应,重合闸应当启动,将断路器重合,而如果断路器有问题,偷跳相不能重合,该断路器将非全相运行。对这类非全相状态,由设备主保护消除的还不多。仍以11系列微机线路保护为例,如果保护选跳或断路器偷跳后未重合造成的非全相运行,从保护功能上看,可能仅有不灵敏零序段或灵敏零序段保护起作用,而它们还要受到定值和方向元件的制约,也就是说,线路保护本身对此可能无能为力。因此,综合考虑以上各种因素,应当装设能反映断路器非全相运行状态的非全相保护,作用于跳开已处于不正常状态的断路器。至于目前有些断路器机构箱中有反映断路器三相位置不一致的保护,各地可根据实际情况使用。2 非全相保护的常用方案分析非全相保护的实现,一般需要反映断路器三相位置不一致的回路,可以采用断路器辅助触点组合实现,也可以采用跳闸位置、合闸位置继电器的接点组合(该接点组合一般由操作箱给出)实现,以下均称之为三相不一致接点。目前,专用非全相保护的常见方案有以下几种。2.1 三相不一致接点直接启动时间继电器如图1所示,无电流接点时,这种方案与配置在断路器机构箱内的非全相保护类似,比较简单,也能起到应有的保护作用。 华北网在反措实施细则中明确要求“非全相保护应直接用断路器辅助接点作为判据,取消电流判别回路”。但是,由于断路器辅助接点的不可靠性及引入电缆运行环境的影响等因素,运行中发生了多次非全相保护误动的事例。如1997年2月1日,华北小营站2212断路器HWJ的A相,操作箱到断路器的电缆断线,最后导致非全相保护误动。基于运行实践,我们认为该方案的安全性值得怀疑。2.2 三相不一致接点串接零序电流继电器接点后启动时间继电器如图1所示,该方案与2.1节方案相比,增加了零序电流闭锁判据,安全性有了很大的提高。由于零序电流较易获得,该方案在系统中获得了比较广泛的应用。主要问题是零序电流的整定。目前,河北电网一般按躲过正常负荷下的不平衡电流整定(一次值约为100A),但是显然地,当线路负荷较小时,非全相保护可能拒动。例如:1999年1月21日河北里县站里章线242断路器,因手跳继电器A相绝缘击穿,造成线路非全相运行,非全相保护拒动,后值班人员手动拉开B相、C相。非全相保护拒动的原因是该线路负荷较小,非全相运行时的零序电流达不到定值(一次值为120A)。该方案的另一问题是,不能用于末端变压器中性点不接地运行的辐射线路,因为当辐射线路非全相运行时,系统中仅出现负序分量,无零序电流流过该线路,这种方案的非全相保护自然要拒动。例如,1998年8月13日河北孙村站孙任线263断路器,在线路故障重合时,因重合闸接点问题,C相未重合,造成非全相运行,但非全相保护拒动,就是因为在当时的系统运行方式下,孙任线单带任东站运行,任东站主变220kV侧中性点未接地运行,263断路器非全相时,线路无零序电流。目前,微机型保护装置中,CSI101/121采用此方案,属于传统非全相保护的微机化产品,三相不一致接点为开关输入量,经内部零序电流判别,延时出口。2.3 三相不一致接点串接负序电流继电器接点后启动时间继电器该方案与2.2节方案类似,仅电流判别采用负序分量,一般用于负序电流较易获得的情况,例如发电机变压器组成套保护中。负序电流也可按躲过正常运行时的不平衡电流整定,当负荷较小时,也可能拒动。较2.2节方案优越之处在于可用于末端变压器中性点不接地运行的辐射线路。目前微机型保护装置中,WFBZ01沿用此方案。2.4 三相位置接点与无流判据组合后启动时间继电器随着微机型保护装置的发展,非全相保护的电流判据,乃至其构成,均趋于多样化。仅举目前应用比较广泛的LFP921装置中的非全相保护的构成进行分析。如图2所示,三相跳闸位置继电器的接点作为开关输入量引入装置,当任一相TWJ动作且无电流时,确认该相断路器在跳开位置,当任一相断路器在跳开位置而三相不全在跳开位置时,若控制开关在合后,则确认为三相不一致,经延时跳闸。 该方案的优点在于适用性广,可应用于各类情况。缺点仍如前述,在负荷较小时,非全相保护可能拒动,但无电流门槛可以整定得较低,灵敏度比零序、负序电流闭锁的方案要高。目前LFP921装置无电流的门槛固定为0.06In。综合比较以上几种方案,只采用三相不一致接点的方案简单,但安全性较差,有电流闭锁的方案提高了安全性,但降低了可依赖性。在采用有电流闭锁的方案时,若负荷较小,非全相保护必然拒动,但考虑到此时系统所承受的负序、零序分量必然很小,对系统和保护的运行已无大碍,且在这种情况下,也有相应的灯光信号指示运行值班人员,可以人工处理。因此,非全相保护以有电流闭锁为佳,电流闭锁的定值应考虑系统和保护的承受能力,尽量低一些。 3 3/2断路器接线的非全相保护对3/2断路器接线的变电站,非全相保护的配置可以按断路器配置,也可以按线路(变压器)配置。按断路器配置时,如果采用第2.1节所述的方案,则各断路器均可独立设置。但如前所述,此方案的安全性存在问题,如果增加电流闭锁,无论是零序、负序,均又分2种情况:1)电流用线路电流,即和电流,各断路器三相不一致接点均串联线路的零序(负序)电流继电器接点,中间断路器使用两线路电流继电器的接点并联作为电流判据。此时,若仅某一断路器出现非全相,而另一断路器未同时出现非全相,或两断路器断开相不同时,则仍维持各断路器的正常运行。零序、负序电流可按前述方法整定。该方案的主要问题是组屏接线较复杂,安装单元划分不很清晰。2)电流用断路器电流。该方案的主要问题是零序、负序电流的整定。由于断路器在正常运行时,两断路器负荷可能分配不均衡,断路器的零序、负序电流已经很大,在这种情况下,零序、负序电流 闭锁的方案应该说是不可取的。目前比较可行的方案是第2.4节提到的诸如LFP921非全相保护的采用无流判据的方案。按线路(变压器)配置时,三相不一致接点为两断路器的接点串联,电流闭锁自然使用线路(变压器)电流。例如河北西柏坡电厂发电机变压器组的非全相保护,配置在发电机变压器组成套保护柜中,电流闭锁用发电机变压器组的负序电流,引入两断路器的串联的三相不一致接点。这种配置方式与按断路器配置使用线路电流闭锁的情况类似。比较上面的两种配置方式,各有优缺点。考虑到断路器非全相时,必须停用才能处理,同时考虑二次接线的简洁、清晰,非全相保护以按断路器配置为好,电流闭锁采用断路器电流的有无作为判据。4 结语电力系统的非全相运行存在很多复杂的问题,在系统非全相运行时,许多保护需采取技术措施,以保证保护的正确动作,非全相保护仅是为限制非全相运行的时间所配置的辅助保护。根据上面的分析,非全相保护应当装设并考虑使用电流闭锁。对3/2接线,非全相保护宜按断路器配置,使用无流判据。非全相保护不是电力系统的主保护,但它在运行中的作用不容忽视。华北网仅1998年下半年非全相保护动作次数就达5次,其中2次不正确动作。随着继电保护技术的发展,微机型装置的大批使用,非全相保护的配置、使用也必将有所发展。希望继电保护专业人员对非全相保护有足够的重视,努力提高非全相保护的可靠性,为系统的安全稳定运行做出应有的贡献。强行励磁起什么作用?强励动作后应注意什么问题?当系统电压大大降低,发电机的励磁电源会自动迅速增加励磁电流,这种作用叫做强行励磁,强行励磁主要有以下几个方面的作用:1.增加电力系统的稳定性2.在短路切除后,能使电压迅速恢复3.提高带时限的过流保护动作的可靠性4.改善系统故障时电动机的自起动条件强励倍数,即强行励磁电压与励磁机额定电压Ue之比,对于空气冷却励磁绕组的汽轮发电机,强励电压为2倍额定励磁电压,强励允许时间为50S;对于水冷和氢冷励磁绕组的汽轮发电机,强励电压为2倍额定励磁电压,强励允许时间为1020S。强行励磁动作后,应该对励磁机的碳刷进行检查,看有无异常,另外要注意电压恢复后短路磁场电阻的继电器接点是否已经打开,是否发生过该接点粘住的现象。2.在机端附近发生相间故障,发电机出口电压降低,对于机端反馈电源的励磁装置,强励可尽量维持发电机的励磁电流,保证发电机保护的灵敏可靠快速出口。285什么是自动发电控制(AGC)?答:自动发电控制简称AGC(Atltomatic Generation Control),它是能量管理系统 (EMS)的重要组成部分。按电网调度中心的控制目标将指令发送给有关发电厂或机组,通过电厂或机组的自动控制调节装置,实现对发电机功率的自动控制。286:AGC有哪几种控制模式?在区域电网中,网、省调AGC控制模式应如何选择?在大区联网中,AGC控制模式应如何选择?答:AGC有三种控制模式:1)定频率控制模式;2)定联络线功率控制模式;3)频率与联络线偏差控制模式。以上三种都是一次控制模式,AGC还有两种二次控制模式: 1)时间误差校正模式;2)联络线累积电量误差校正模式。区域电网中,网调一般担负系统调频任务,其控制模式应选择定频率控制模式;省调应保证按联络线计划调度,其控制模式应选择定联络线控制模式。在大区互联电网中,互联电网的频率及联络线交换功率应由参与互联的电网共同控制,其控制模式应选择联络线偏差控制模式。 287什么叫ACE?如何计算?答:ACE(Area Control Error)即区域控制误差的简称,其计算公式为ACEPT f式中入PT-联络线功率交换误差; f-频率偏差;-频率偏差系数。对定频率控制模式,ACE只取右边项。对定联络线功率印制模式,ACE只取左边项。对频率联络线偏差控制模式,ACE两项都取。如果还加上二次控制模式,ACE还需增加相应的附加项。 288什么叫发电源?对发电源常用的控制模式有哪些?答:发电源是AGC的一个控制对象,可以是一台机组,几台并列运行的机组或整个电厂或几个并列运行的电厂。AGC软件包发出的设点控制指令都是针对发电源的。对发电源常用的控制模式有:(1)调节模式。正常的AGC调节模式,参与对ACE的校正控制,调节的基准功率是在线经济调度算出的功率,因此是随负荷水平浮动的,并由等微增原则在参与调节的发电源间进行分配。(2)基点模式。发电源只响应调度员输入的基点功率,对ACE不响应,不参与校正ACE的控制。(3)计划模式。发电源只响应于预先输入的计划曲线,对ACE不响应,不参与校正ACE的控制。(4)爬坡模式。发电源从当前功率变化到新的基点功率时的模式。新的基点功率可以由调度员输入设定,或通过计划模式到达预定时间后自动设定。爬坡速度在数据库中设定。(5)基点调节模式。与调节模式相同,只是调节的基准功率是调度员输入的基点功率。(6)计划调节模式。与调节模式相同,只是调节的基准功率是计划曲线中设定的功率。(7)基点增援模式。正常情况下与基点模式相同,紧急情况下与调节模式相同。(8)计划增援模式。正常情况下与计划模式相同,紧急情况下与调节模式相同。异步电动机调速方式 三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流直流交流变频器和交流交流变频器两大类,目前国内大都使用交直交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速7090的生产机械上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 四、绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点: 调压调速线路简单,易实现自动控制; 调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 调压调速一般适用于100KW以下的生产机械。 六、电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。 电磁转差离合器由电枢、磁极和励磁绕组三部分组成。电枢和后者没有机械联系,都能自由转动。电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。电磁调速电动机的调速特点: 装置结构及控制线路简单、运行可靠、维修方便; 调速平滑、无级调速; 对电网无谐影响; 速度失大、效率低。 本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。 七、液力耦合器调速方法 液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为: 功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要; 结构简单,工作可靠,使用及维修方便,且造价低; 尺寸小,能容大; 控制调节方便,容易实现自动控制。 本方法适用于风机、水泵的调速。为何装设发电机意外加电压、断路器断口闪络、发电机启动和停机保护(1)发电机意外加电压保护。发电机在盘车过程中,由于出口断路器误合闸,突然加电压而使发电机异步启动,能给机组造成损伤。因此需要有相应的保护,迅速切除电源。一般设置专用的意外加电压保护,可用低频元件和过流元件共同存在为判据。瞬时动作,延时0.20.3S返回,以保证完成跳闸过程。该保护正常运行时停用,机组停用后才投入。在异常启动时,逆功率、失磁保护、阻抗保护也可能动作,但时限较长,设置专用的误合闸保护比较好。(2)断路器断口闪络保护。接在220KV以上电压系统的大型发电机变压器组,在进行同期并列的过程中,断路器合闸之前,作用于断口上的电压随待并发电机与系统等效电动势之间角度差的变化而不断变化,当180时其值最大,为两者电动势之和,当两电动势相等时,则有两倍的运行电压作用于断口上,有时要造成断口闪络事故,断口闪络给断路器本身造成损坏,并且可能由此引起事故扩大,破坏系统的稳定运行,一般是一相或两相闪络,产生负序电流,威胁发电机的安全,为了尽快排除断口闪络事故,在大机组上可装设断口闪络保护。断口闪络保护动作的条件是断路器三相断开位置时有负序电流出现。断口闪络保护首先动作于灭磁,失效时动作于断路器失灵保护。(3)发电机启动或停机保护。对于在低转速启动过程中可能加励磁电压的发电机,如果原有保护在这种方式下不能正确工作时,需加装发电机启停机保护,该保护应能在低频情况下正确工作。例如作为发电机变压器组启动和停机过程的保护,可装设相间短路保护和定子接地保护各一套,将定值降低,只作为低频工况下的辅助保护,在正常工频运行时应退出,以免发生误动作。为此辅助保护的出口受断路器的辅助触点或低频继电器触点控制。什么是电力系统稳定器pss?它的功能是什么?英文:power system stabilization电力系统稳定器(pps)就是为抑制低频振荡而研究的一种附加励磁控制技术。它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。用于提高电力系统阻尼、解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。由试验可见: (1)励磁控制系统滞后特性基本分为两种:自并励系统(约-4090):励磁机励磁系统(约-40-150)。(2)同一频率角度范围,表示同一发电机励磁系统在不同的系统工况和发电机工况下有不同的滞后角度,从几度到十几度,其中也包含了测量误差。(3)温州电厂与台州电厂虽采用同一励磁控制系统,因转子电压反馈和调节器放大倍数不同,励磁系统滞后特性发生明显变化。(4)励磁调节器的PSS迭加点位置不同,励磁控制系统滞后特性也不同。2.有补偿频率特性的测量 有补偿频率特性,由无补偿频率特性与PSS单元相频特性相加得到,用来反映经PSS相位补偿后的附加力矩相位。DLT650-1998大型汽轮发电机自并励静止励磁系统技术条件提山,有补偿频率特性在该电力系统低频振荡区内要满足-80-135的要求,此角度以机械功率方向为零度。根据试验的方便情况,可采用两种方法:(1)断开PSS信号输入端,在PSS输入端加噪声信号,测量机端电压相对PSS输入信号的相角:(2)PSS环节的相角加上励磁控制系统滞后相角。 由试验可见:(1)通过调整PSS参数,可以使有补偿频率特性在较宽的频率范围内满足要求。 (2)ALSTHOM机组PSS低频段相位补偿特性未能满足要求。(3)北仑电厂1号机PSS在小于04Hz范围增大隔直环节时间常数,使之低频段有良好的相位补偿特性,而且提升放大倍数(02Hz处提高176倍)。3.PSS放大倍数和输出限幅 PSS放大倍数都以标幺值表示。输入值按PSS信号是哪一种,取机组额定有功功率、额定转速或额定频率为基值。输出值以PSS迭加点额定机端电压为基值。当PSS迭加点与电压迭加点不一致时,要按低频振荡频率下的环节放大倍数折算额定机端电压值。因PSS中的超前滞后环节影响放大倍数,本文以1Hz下的放大倍数进行比较.4.PSS开环频率特性 开环频率特性用于测量增益裕量及相角裕量,判断闭环控制系统的稳定性,判断PSS放大倍数是否适当。可在PSS输入端或PSS输出端解开闭环进行测量。由表5可见,除台州电厂7、8号机和北仑电厂2号机以外,开环频率特性的增益裕量及相角裕量均符合DLT650-1998标准的要求,增益裕量大于6dB、相角裕量大于40。5.负载电压给定阶跃响应 负载电压给定阶跃响应作为为验证试验项目,可以直接观察PSS投入引起地区内与本机有关振荡模式阻尼比的提高,从表6中可见振荡频率均在118Hz以上。阶跃响应不能检验区域间与本机有关振荡模式阻尼比的提高。试验结果表明,以上机组PSS的作用均有效。有的机组对负载电压阶跃反映迟钝,以至难以测量,这可能是调节器的一些环节滤去了阶跃信号中的高频分量,也可能是在试验工况下系统组尼比较大。二、对PSS工作的几点看法1、关于相位补偿的频率范闹 DLT650-1998大型汽轮发机自并励静止励磁系统技术条仆提出了PSS应满足该机各振荡模式下的相位补偿要求,其振荡频率一般在02Hz20Hz范围内。相位补偿可按分析计算得出该系统振荡模式的实际频率范围设计,也可按02Hz20Hz频率范围设计。后者因频带宽,不易在全范围满足要求,如果有一定的经验,也可以经初步分析后进行现场试验整定。以上所列浙江电网PSS整定I作均为不依靠系统计算分析,仅由现场试验整定。除ALSTHOM机组PSS因没有可调整点无法扩大相位补偿的频率范围之外,其它机组在05Hz16Hz内满足-60-135有补偿频率特性的要求。这里要指出,在DLT6501998发布之前,采用有补偿频率特性-60-135的要求:DLT650-1998提出了有补偿频率特性-80-135的要求。 ALSTHOM机组PSS的相位补偿仅满足075Hz以上低频振荡范围的要求。其原因是PSS仅设计一个隔直环节,没有超前滞后环节。建议:(1)对电力系统进行小干扰稳定性分析后,判断ALSTHOM机组PSS是否需要重新设计。(2)应在供货前提供励磁系统数学模型参数,得到确认后再发货。 现场试验整定的条件为,励磁调节器可以进行励磁系统滞后特性的测量,即可以在PSS迭加点加入测量川的噪声信号。但有些微机励磁调节器做不到。对此,DLT650-1998柄;准中明确要求,励磁调节器应具备测量励磁控制系统滞后特性的功能。将PSS计算分析得到不同运行方式利事故状况下的励磁系统滞后特性,结合现场试验实测励磁系统滞后特性,从而合理而准确地整定PSS参数。2、关于振荡模式的分析 通过振荡模式的分析,了解各振荡模式的振频和阻尼比。 PSS首先应保证在大小运行方式下阻尼比均满足要求。于是要分析无PSS时大小运行方式下的阻尼比,确定必须投入PSS的电厂和机组。 电力系统故障以后阻尼往往被削弱,所以要进行故障预测和故障后动态稳定性分析,以判断在故障情况FPSS是否仍可为系统动态稳定提供足够的正阻尼。如存在问题,需进行进一步研究。各振荡模式的振频应包括在PSS频带范围内。 由于振荡模式分析需要电力系统和励磁系统的参数,需要运行状态和分析经验的积累,建议在开展分析工作的同时,不失时机地通过现场试验将大型汽轮发电机组PSS投入运”。通过投入试验来验证和改进分析工作,用计算分析来指导和简化PSS投入试验。3、关于PSS放人倍数 PSS放大倍数可按临界放大倍数的1315整定。浙江电网PSS试验均采用测量开环频率特性稳定裕量的方法测量调整PSS放大倍数。其原因有三个:一是测量开环频率特性稳定裕量采用加白噪声到励磁系统的方法,试验简单,且对发电机的扰动较小,试验安全:二二是有的装置PSS放大倍数调整困难,临界放大倍数不易达到:三是有的装置PSS放大倍数做死了,没法调整。在已进行的9处PSS试验中,只有台州电厂7、8号机ALSTHOM机组的增益裕量和相角裕量都小于标准规定值,说明采用测量开环频率特性稳定裕量的方法来测量调整PSS放大倍数是可行的。 台州电厂7、8号机ALSTHOM机组的增益裕量和相角裕量小于标准规定值,但是其PSS放大倍数却只有027和048,在9台机的PSS放大倍数中偏小。北仑电厂1号机PSS计入PSS迭加点到励磁电压的放大倍数后,从PSS信号输入点到励磁电压的总放大倍数看,与稳定裕量的关系是明确的. 台州电厂7、8号机和北仑电厂2号机总放大倍数人于其它机组一倍以上,它们的稳定裕量明显低于其它机组。台州电厂5号机组和温州电厂1、2号机组有着相近的总放大倍数,但是它们的稳定裕量有差别,这说明放大倍数与机组在系统中的位置有 关,放大倍数需要由试验或计算的稳定裕量来决定。 对一些原动机稳定性不是很好、平时有功功率就有波动的机组,若PSS仅采用有功功率信号,会增加机组有功功率的波动。因为仅采用有功功率信号的PSS有反调作用。对此,首先应减小原动机的扰动,其次PSS取较小的放大倍数。4关于PSS输出限幅 放大倍数大,PSS输出就容易限幅。比如取有功功率为信号的PSS放大倍数为1,输出限幅为5,当有功功率波动大于5就限幅,即使有功功率波动人到无穷,PSS输出只使基波幅值增加到5的127倍。一般认为,PSS输出限幅可以按510考虑。不同的振荡模式和强度对系统的破坏是不同的。故障发生可能伴随几种振荡模式,限幅是不加区别的削弱PSS信号对各种振荡模式的控制。智能式的PSS有可能判别严重后果的振荡模式并加大对其的控制力度。5核实振荡模式分析结果 可以通过励磁系统加入阶跃信号给系统一个激励,分析该响应,得到与本机有关的振荡模式,从而核实振荡模式计算分析结果。6制订PSS整定计算规范和现场试验大纲 上述问题涉及PSS计算分析研究。浙江省电力试验研究所早年进行过振荡模式的分析(小干扰稳定性分析)和PSS参数设计,但未与PSS现场投运结合起来。希望滚动地进行振荡模式的分析,相应制订协调一致的PSS整定计算规范和现场试验大纲。1999年6月全国电力系统励磁研讨会也提出了这个要求。1、PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”PLC的特点2.1可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。2.2配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。2.3易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。2.4系统的设计、建造工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。2.5体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。3. PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。3.1开关量的逻辑控制这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。3.2模拟量控制在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。3.3运动控制PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。3.4过程控制过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。3.5数据处理现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。3.6通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。4. PLC的国内外状况世界上公认的第一台PLC是1969年美国数字设备公司(DEC)研制的。限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。此时的PLC为微机技术和继电器常规控制概念相结合的产物。20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。20世纪80年代初,可编程控制器在先进工业国家中已获得广泛应用。这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国自己已可以生产中小型可编程控制器。上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的PLC生产厂家。可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。5. PLC未来展望21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(DistributedControlSystem)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。1 PLC基础知识1.1 PLC的发展历程在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字公司研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称ProgrammableController(PC)。个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为ProgrammableLogic Controller(PLC)。上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为3040%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。1.2 PLC的构成从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。1.3 CPU的构成CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。1.4 I/O模块PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年澳门特别行政区事业单位招聘考试教师招聘考试教育心理学试题及答案
- 2025年事业单位招聘考试综合类职业能力倾向测验真题模拟试卷(艺术)
- 贺州科目一考试题目及答案
- 农村发展职业规划指南
- 电子警察标书
- 2025国考陕西民航公安申论归纳概括模拟题及答案
- 2025国考大同市海事管理岗位行测高频考点及答案
- 2025国考双鸭山市机关事务岗位申论高频考点及答案
- 2025国考赤峰市新闻宣传岗位申论预测卷及答案
- 2025国考常州市海洋管理岗位申论高频考点及答案
- 《2025年CSCO前列腺癌诊疗指南》更新要点解读 2
- 2025年全国中小学生天文知识竞赛试题库(共五套)
- 富马酸泰吉利定注射液-临床药品解读
- 初中生如何正确处理异性之间的交往2024-2025学年初中主题班会 课件
- 接待来访客户登记表
- 《分析化学》课程思政教学案例(一等奖)
- TCANSI 133-2024 液化天然气(LNG)燃料动力船舶槽车气试加注作业安全要求
- Unit 1 Art Write an Art Exhibition Announcement 教学设计-2023-2024学年高中英语人教版(2019)选择性必修第三册
- 暂停支付一切款项通知函
- 2025年华侨港澳台生联招考试高考地理试卷试题(含答案详解)
- 一口气看遍中国的地理之美中国地理介绍P
评论
0/150
提交评论