流体基础知识.doc_第1页
流体基础知识.doc_第2页
流体基础知识.doc_第3页
流体基础知识.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黏度是测量流体内在摩擦力的所获得的数值。当某一层流体的移动会受到另一层流体移动的影响时,此摩擦力显得极为重要。摩擦力愈大,我们就必须施予更大的力量以造成流体的移动,此力量即称为 ”剪切(shear)”。剪切发生的条件为当流体发生物理性地移动或分散,如倾倒、散布、喷雾、混合等等。高黏度的流体比低黏度的材料需要更大的力量才能造成流体的流动。牛顿以图4-1的模式来定义流体的黏度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:F/A dv/dx其中与材料性质有关,我们称为”黏度”。 速度梯度,dv/dx,为测量中间层的相对速度,其描述出液体所受到的剪切,我们将它称为”剪速(shear rate)”,以S表示;其单位为时间倒数(sec-1)。 F/A项代表了单位面积下,剪切所造成的合力,称为”剪力(shear stress)”,以F代表;其单位为”达因每平方公分(dyne/cm2)”。注:如何把达因每平方公分(dyne/cm2)转化为N/cm2? 使用这些符号,黏度计可以下列数学式定义:黏度F/S剪力/剪速 黏度的基本单位为 ”poise”。我们定义一材料在剪力为1达因每平方公分、剪速为1 sec-1下的黏度为100 poise。测量黏度时,你可能会遭遇到黏度的单位为 “Pas” 或 “mPas” 的情况,此为国际标准系统,且有时较被公制命名所接受。1 Pas等于10 poise;1 mPas等于1 cp。 牛顿假设所有的材料在固定温度下,黏度与剪速是没有相关的,亦即两倍的力量可以帮助流体移动两倍的速度。就我们所知,牛顿的假设只有部分是正确的。牛顿流体牛顿称具有此形式流动行为的所有流体,皆称为”牛顿(Newtonian)”,然而这只是你可能遭遇到的流体中的其中一种而已。牛顿流体的特性可参考图4-2;图A显示剪力(F)和剪速(S)之间为线性关系;图B显示在不同剪速下,黏度皆保持一定。典型的牛顿流体为水与稀薄的机油。 上述代表的意义即为在固定温度下,不论你所使用的黏度计型号、转子、转速为何,牛顿流体的黏度皆保持一定。标准Brookfield黏度值为以Brookfield仪器在某一剪速范围内所测之值,这就是为什么牛顿流体可以在所有我们的黏度计型号下操作。牛顿流体明显地为最容易测量的流体只要拿出你的黏度计并操作它即可。不幸的是,更常见且更复杂的流体非牛顿流体,我们将在下一节中介绍。非牛顿流体概略的定义为F/S的关系不为常数,亦即当施予不同的剪速,剪力并不随着相同比例变化(或甚至同一方向)。这些流体的黏度会受到不同剪速的影响,同时,不同型号黏度计的设定参数、转子、转速都会影响到非牛顿流体的黏度值。此测量的黏度值称为流体的”表观黏度(apparent viscosity)”,其值为正确的只有当实验的参数值被正确的设定且精准的测得。 非牛顿流体流动可以想象成流体为不同形状和大小的分子所组成,当它们流经彼此,亦即流动发生时,需要多少力量才能移动它们将取决于它们的大小、形状及黏着性。在不同的剪速下,排列的方式将会不同,而且需要更多或更少的合力才能保持运动。 辨别不同非牛顿流体的行为,可由剪速的差异得到流体黏度的变化,常见非牛顿流体的形式包括:拟塑性的(pseudoplastic):此形式流体的特性为当剪速增加时,会伴随着流速的减少,如图4-3其可能为最常见的非牛顿流体。拟塑性流体包括油漆、乳液和各种不同形式的流体。此类流体的行为有时候可称为”shear thinning”。膨胀性的(diltant):膨胀性的流体其特性为流速随着剪速的增加而增加,如图4-4。虽然膨胀性流体不如拟塑性流体常见,然而膨胀性流体常可由存在有不会聚集固体的流体中看到,如泥浆、糖果合成物、玉米淀粉类与水的混合物以及沙/水混合物。此类流体的行为也可称为”shear thickening”。塑性的(plastic):此类流体的行为就如同固体处在静电的环境中。在流体流动前,我们就必须先施予流体某一力量,此力量称为“屈服力(yield value)”。此类流体典型的例子为蕃茄酱,其产值造成蕃茄酱无法直接从罐子中倒出,除非我们先摇动或敲击。当产值超过上限值时,流体开始流动。塑性流体包含有牛顿流体、拟塑性流体、膨胀性流体的特性,如图4-5。到目前为止我们只有讨论非牛顿流体剪速的效应,当我们同时考虑时间效应时,有会有什么问题发生?此问题使得我们必须讨论其它两类非牛顿流体:”摇变性的(thixotropic)” 和 “流变性的(rheopectic)”。一些流体在相同剪速下放置一段时间,其黏度随着时间有所变化,具有此现象的流体可分为两类:摇变性:如图4-6 所示,摇变性流体在相同剪力下,其黏度会随着时间的增加而下降。流变性:此性质与摇变性质正好相反,此类流体在相同剪速下,其黏度会随着时间的增加而增加,如图4-7 所示。在流体中,摇变性与流变性质有可能与先前提到的流体行为同时发生,或发生在某些特定的剪速下。时间对于流体的影响变异极大;在相同的剪速,一些流体达到其终端速度可能约几秒钟,而有些可能就必须几天的时间。具有流变性质的流体并不常遇到,然而具有流变性质的流体则常可从油脂、印刷染料、油漆中看到。当我们改变摇变性质流体的剪速时,其行为如图4-8 所示。在剪力对剪速的作图中,剪速会先增加至某一数值,然后立刻下降至起始点。注意”上升”与” 下降” 曲线并不为同一条。此” 磁滞循环(hysteresis loop)”为流体流速的减小伴随着剪切时间的增加所造成,此效应可能或不可能为可逆的;一些摇变性流体如果允许一段时间的不扰动,将能回到其初始速度,然而一些流体则否。当然,具有流变性质的流体在黏度测量技术上具有很深远的影响,在4-7 节中我们将讨论这些效应,及处理这些效应的方法。第五章中将介绍以先进的数学技巧分析不同状况下的流体行为,然而,我们将先讨论层流(laminar)和紊流(turbulent)对于黏度测量的影响。4.6 层流和紊流黏度的定义暗示了”层流”的存在:流体流动时,每一层间不存在有物质的传送,黏度的行为即为这些层间的摩擦力。基于很多因素下,有些流体在最大流速时,每一层流体间会受到另一层流体移动的影响,同时质量传送亦会发生,此称为”紊流”。在此过程中,分子或更大的粒子从某一层跳跃至另一层,并不断的释放能量。此现象的结果即在同一速度下,紊流必须比层流输入更多的能量,才能继续保有此一现象。在与层流相同的剪速下,此额外输入的能量,可以经由明显变大的剪力观察出来,此结果会导致得到较高速度的读数。由层流转变为紊流的临界点受到很多因素影响,除了造成流体流动的流速以外。材料的流速、比重、黏度计转子的形状和样品槽都会影响此临界点。分辨紊流和膨胀性流体的行为需要非常小心(参照4.4 节)。通常具有膨胀性质的材料,其黏度会随着剪速的增加而持续地增加;紊流的特性则为在特定剪速下,黏度会突然且不间断地增加。在临界点以下时,材料的流动行为可能为牛顿或非牛顿行为。由于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论