荧光纳米探针在生命科学中的应用.docx_第1页
荧光纳米探针在生命科学中的应用.docx_第2页
荧光纳米探针在生命科学中的应用.docx_第3页
荧光纳米探针在生命科学中的应用.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纳米荧光探针在生命科学中的应用摘要:纳米荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光 探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克 服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点。关键字:纳米荧光探针、生物检测和识别、无机发光量子点Abstract:Nano fluorescence probe is widely used in chemical sensing, optical materials and biological detection and identification field , and to realize the above functions as a primary technology. But in a traditional fluorescent primarily organic fluorescent probes in the application of some are difficult to overcome defects. Recently, inorganic light quantum dots, fluorescence polymer microspheres, nano composite fluorescence silica nanoparticles and fluorescence nanoprober have appeared in a certain extent, g served the defects of conventional organic fluorescence reagent, biological analysis to provide the new development area, become the focus of research in recent years.Key words: Nano fluorescence probe, Biological detection and recognition, Inorganic glowing dots1、 Classification of fluorescent nano probe 荧光纳米粒子是指与蛋白质或其他大分子结构非共价相互作用而使一种或几种荧光性质发生改变的小分子物质。可用于研究大分子物质的性质和行为。可以发荧光的半导体纳米微晶体(量子点)或将荧光团通过包埋、共价键连接以及超分子组装等方式引入有机 或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易 地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米 粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。1.1 Quantum dots通常是一种由n一Vl族或m一V族元素组成的纳米颗粒,直径在1一100nm之间,能够接受激发光产生荧光的半导体纳米颗粒。量子点在生物标记、太阳能电池和发光器件等领域具有广泛的应用前景。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面 的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光 染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。1.2 Application of quantum dots in life science很多现代发光材料和器件都由半导体量子结构所构成,材料形成的量子点尺寸都与过去常用的染料分子的尺寸接近,因而象荧光染料一样对生物医学研究有很大用途。从生物体系的发光标记物的差别上讲,量子点由于量子力学的奇妙规则而具有显著的尺寸效应,基本上高于特定域值的光都可吸收,而一个有机染料分子只有在吸收合适能量的光子后才能从基态升到较高的激发态,所用的光必须是精确的波长或颜色,这明显与半导体体相材料不同,而量子点要吸收所有高于其带隙能量的光子,但所发射的光波长(即颜色)又非常具有尺寸依赖性。所以,单一种类的纳米半导体材料就能够按尺寸变化产生一个发光波长不同的、颜色分明的标记物家族,这是染料分子根本无法实现的。 1.3 Fluorescent polymer nanoparticles高分子荧光纳米微球开始是以聚苯乙烯、聚甲基丙烯酸酯类、聚丙烯酰胺类为微粒主体,表面键合或吸附荧光素、菁色素(等荧光物质的荧光纳米微球。因为单个纳米粒子可以键合多个荧光分子,所以荧光强度有所增强。但由于荧光分子没有被保护在高分子 材料中,仍然受外界氧化或光漂白的影响,荧光的稳定性并没有提高。1.4 Composite fluorescent silica nanoparticles复合荧光二氧化硅纳米粒子是由功能性的内核、可生物修饰的硅壳以及修饰在硅壳表面的生物分子构成,具有明显核壳结构的一类新型的纳米颗粒,其内核材料可以 是有机荧光染料、稀土发光材料、量子点等。由于该类型的纳米颗粒采用油包水反相微乳液方法成核,通过硅烷化试剂在微乳液中水解形成三维网状结构 的硅壳进行包壳,所以采用不同的硅烷化试剂可以制备出表面带有不同官能团的核壳型生物纳米颗粒。通过对纳米颗粒的表面进行各种生物大分子的修饰,如:肽片 断、抗体、生长因子等,可以实现对特异性细胞的识别、分离和检测。于是,复合荧光二氧化硅纳米粒子由于其具有良好的分散性、温和的合成条件、可重复合成及 细胞毒性小等优点已在生物学领域得到了广泛的应用。目前,复合荧光二氧化硅纳米粒子在细胞水平上的研究主要集中在特定细胞的染色、识别和分离、细胞内 pH 的检测及基因转染等方面。2 Application of fluorescent nanopartcles in life science2.1 Fluorescent nanoparticles were directly used for biological detection荧光纳米粒子作为一种荧光探针已被广泛应用在生物标记及医疗诊断领域。近年来国外已涌现出多家研制和开发荧光纳米粒子生物荧光标记的公司,我国在这方面的研究正逐步展开,也出现开发纳米荧光探针相关产品的一些公司,如武汉的珈源公司就提供各种可用于生物的量 子点探针。基于目前国内外的研究现状,要实现荧光半导体纳米粒子在生物检测中的应用关键在于对荧光纳米粒子的表面结构和功能的准确控制,而且纳米粒子表面 必需具有亲水性官能团。为了使TOPO 法合成的油溶性量子点转移到水相,主要采用表面包覆和表面置换两种方法。例如,在量子点表面包覆SiO2 壳层,Alivisatos 等利用巯基硅氧烷(MPS) 置换量子点表面的TOPO 分子,然后进一步将硅氧烷水解缩聚使微粒表面形成一种稳定的SiO2 壳层。通过水解有机硅氧烷还可以形成具有胺基、脲丙基和羧基等活性官能团的SiO2 壳层。自1998 年Alivisatos 和Nie 等提出用半导体纳米粒子作生物荧光标记的最初构想以来,基于荧光量子点的生物偶联得到蓬勃发展。荧光量子点用于生物偶联主要依靠纳米粒子表面的活性基团如 羧基、胺基、醇基和巯基等。主要是利用纳米粒子表面活性基团与生物分子之间形成共价偶联、静电吸附、疏水作用和硅烷偶联等。归纳起来,荧光纳米粒子与生物 分子偶联主要有两种方法:一种是通过化学反应,即通过表面修饰有羧基或氨基的水溶性纳米晶与生物分子中的氨基或羧基形成酰氨键,实现偶联。该方法通常用于 较复杂的研究体系,如抗源-抗体之间的识别、活体标记及特异性标记等。另一种是静电吸附方法,带电荷的纳米粒子可以与带相反电荷的生物分子通过静电相互作 用吸附偶联,该方法适用于简单体系。纳米粒子与抗体偶联后,利用抗源-抗体间的特异性识别,可以将不同荧光纳米粒子修饰在底物上,并对底物进行跟踪。迄今 为止,纳米粒子和生物分子的偶联物已经在DNA 杂化、免疫检测、受体诱导的细胞内吞作用和生物组织成像等方面得到应用,而且纳米粒子作为新一类的荧光标记材料已经逐步发展到活体细胞成像。将纳米粒子直接用于生物检测主要优势是利用纳米粒子的高荧光稳定性,可以在几十分钟到数小时研究细胞的过程中进行实时跟踪检测;可以用多种颜色的纳米粒子 同时对细胞内或细胞表面进行多个靶向目标研究;将纳米粒子表面包覆有惰性物质壳层,使纳米粒子对细胞的毒性低于有机染料带来的毒性。另外,人们还合成了近 红外发光的纳米粒子,如HgTe 纳米粒子有较高的发光效率和近红外发射波长,为活体基因表达和酶活动研究提供了新的机遇。2.2 Fluorescence encoding基因芯片技术、生物传感及生命科学技术的快速发展为生物医学研究领域诸如基因表达、药物发现及临床诊断带来了新的契机和挑战。识别种类繁多的生物分子需要 大量的平行标记编码,而传统的有机荧光染料标记方法已达不到同时标记并定位区分不同生物分子的要求,需要发展更有效的平行标记编码。由于量子点的荧光发射 峰窄,而且不同颜色荧光可以被同一单色光源同时激发,决定了它们是发展平行标记编码的良

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论